<h2>
Answer: 277.777 m</h2>
Explanation:
The situation described here is parabolic movement. However, as we are told that the rock was<u> projected upward from the surface</u>, we will only use the equations related to the Y axis.
In this sense, the movement equations in the Y axis are:
(1)
(2)
Where:
is the rock's final position
is the rock's initial position
is the rock's initial velocity
is the final velocity
is the time the parabolic movement lasts
is the acceleration due to gravity at the surface of the moon
As we know
, equation (2) is rewritten as:
(3)
On the other hand, the maximum height is accomplished when
:
(4)
(5)
Finding
:
(6)
Substituting (6) in (3):
(7)
(8) Now we can calculate the maximum height of the rock
(9)
Finally:
It’s c because it’s not Control so that means that it would be broken and non fix able
Because its expose to the wires inside that could electrify you.
the equation of the tangent line must be passed on a point A (a,b) and
perpendicular to the radius of the circle. <span>
I will take an example for a clear explanation:
let x² + y² = 4 is the equation of the circle,
its center is C(0,0). And we assume that the tangent line passes to the point
A(2.3).
</span>since the tangent passes to the A(2,3), the line must be perpendicular to the radius of the circle.
<span>Let's find the equation of the line parallel to the radius.</span>
<span>The line passes to the A(2,3) and C (0,0). y= ax+b is the standard form of the equation. AC(-2, -3) is a vector parallel to CM(x, y).</span>
det(AC, CM)= -2y +3x =0, is the equation of the line // to the radius.
let's find the equation of the line perpendicular to this previous line.
let M a point which lies on the line. so MA.AC=0 (scalar product),
it is (2-x, 3-y) . (-2, -3)= -4+4x + -9+3y=4x +3y -13=0 is the equation of tangent