Carbons starting from the left end:
- sp²
- sp²
- sp²
- sp
- sp
Refer to the sketch attached.
<h3>Explanation</h3>
The hybridization of a carbon atom depends on the number of electron domains that it has.
Each chemical bond counts as one single electron domain. This is the case for all chemical bonds: single, double, or triple. Each lone pair also counts as one electron domain. However, lone pairs are seldom seen on carbon atoms.
Each carbon atom has four valence electrons. It can form up to four chemical bonds. As a result, a carbon atom can have up to four electron domains. It has a minimum of two electron domains, with either two double bonds or one single bond and one triple bond.
- A carbon atom with four electron domains is sp³ hybridized;
- A carbon atom with three electron domains is sp² hybridized;
- A carbon atom with two electron domains is sp hybridized.
Starting from the left end (H₂C=CH-) of the molecule:
- The first carbon has three electron domains: two C-H single bonds and one C=C double bond; It is sp² hybridized.
- The second carbon has three electron domains: one C-H single bond, one C-C single bond, and one C=C double bond; it is sp² hybridized.
- The third carbon has three electron domains: two C-C single bonds and one C=O double bond; it is sp² hybridized.
- The fourth carbon has two electron domains: one C-C single bond and one C≡C triple bond; it is sp hybridized.
- The fifth carbon has two electron domains: one C-H single bond and one C≡C triple bond; it is sp hybridized.
Hello!
Bromine can be classified as a pure substance.
Why?
Bromine is an element with atomic number 35 on group 17 of the Periodic Table. That's the first sign that shows us that it is a pure substance.
But the fact that it has a clear and defined boiling and melting point is a sign that we are in the presence of a pure substance. Pure substances are characterized by defined boiling and melting points.
Mixtures usually have a range of temperatures in which they melt and boil.
Have a nice day!
Explanation:
The <u>First Law of Thermodynamics</u> states that energy cannot be created or destroyed in an isolated system. In other words, energy can be converted from one form into another, but it cannot be created nor destroyed.
<u>Conduction</u> is the transfer of energy from one molecule to another by direct contact. This transfer occurs when molecules hit against each other, which can take place in solids, liquids, and gases.
When you put your cold hands under your legs to warm your hands up, the heat energy from your legs is being transferred to your hands through conduction. However, since energy cannot be created, there is no extra heat energy that can instantaneously replace the heat created by your legs.
Answer:
The atom must lose its three extra electrons to make the atom over all neutral.
Explanation:
The three subatomic particles construct an atom electron, proton and neutron. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other. For example if neutral atom has 6 protons than it must have 6 electrons.
If an atom have -3 charge it means three more electrons are added. In order to make the atom overall neutral three more electrons must be removed so that negative and positive charge becomes equal and cancel the effect of each other and make the atom neutral.
Electron:
The electron is subatomic particle that revolve around outside the nucleus and has negligible mass. It has a negative charge.
Symbol= e⁻
Mass= 9.10938356×10⁻³¹ Kg
It was discovered by j. j. Thomson in 1897 during the study of cathode ray properties.
Proton and neutron:
While neutron and proton are present inside the nucleus. Proton has positive charge while neutron is electrically neutral. Proton is discovered by Rutherford while neutron is discovered by James Chadwick in 1932.
Symbol of proton= P⁺
Symbol of neutron= n⁰
Mass of proton=1.672623×10⁻²⁷ Kg
Mass of neutron=1.674929×10⁻²⁷ Kg