X is the gas and Y is the liquid. Intermolecular distances are farther apart in gases than in liquids.
The dissolution of a solute in a solvent to form a solution usually occur in three steps, which are delta H1, delta H2 and delta H3.
For dissolving an ionic solid, the lattice energy, which is the energy that is holding the ionic particles in place correspond to DELTA H2 and it is the energy that must be conquered. The higher the charge in the ionic solid, the higher the lattice energy. The lattice energy must be overcome in order for the solid to dissolve.
The mole fraction of solute in a 3.87 m aqueous solution is 0.0697
<h3>
calculation</h3>
molality = moles of the solute/Kg of the solvent
3.87 m dissolve in 1 Kg of water= 1000g
find the moles of water= mass/molar mass
that is 1000 g/ 18 g/mol= 55.56 moles
mole of solute = 3.87 moles
mole fraction is = moles of solute/moles of solvent
that is 3.87/ 55.56 = 0.0697
Answer:
This phenomenon occurs because the door, being metal and leading to changes in temperature, undergoes proportional and morphological changes, metals face expansion and expansion in the presence of heat, called thermal expansion.
On the other hand, against the cold, thermal contraction is suffered, that is why its volume decreases, and it contracts.
Explanation:
The expansion phenomenon of the door is not linear, since it increases its volume in width and height, therefore simultaneously on the entire surface.
When an area or surface expands, it does so by increasing its dimensions in the same proportion. For example, a metal sheet increases its length and width, which means an increase in area. Area dilation differs from linear dilation in that it involves an increase in area.
The area expansion coefficient is the increase in area that a body of a certain substance experiences, with an area equal to unity, as its temperature rises one degree centigrade. This coefficient is represented by the Greek letter gamma.
Regarding shrinkage, a clear example of this is when a metal foundry or a weld shrinks, sometimes it is difficult to understand with examples like these (doors) because it is little noticeable by our eyes and the dimensional changes for our perspective. it is infima.