Answer:
The smallest diameter is 
Explanation:
From the question we are told that
The resolution of the telescope is 
The wavelength is 
From the question we are told that

So 
Therefore


Now 
So 
=> 

The smallest diameter is mathematically represented as

substituting values


Answer:
b)determining the electric field due to each charge and adding them together as vectors.
Explanation:
The electric Field is a vector quantity, in other words it has a magnitude and a direction. On the other hand, the electric field follows the law of superposition. The electric field produced by two elements is equal to the sum of the electric fields produced by each element when the other element is not present. in other words, the total electric field is solved determining the electric field due to each charge and adding them together as vectors.
The second option rolling friction
Answer:
Letter b is wavelength. Letter a is amplitude.
Explanation:
Let's imagine a simple experiment. Imagine you have a long thick rope which one end is at your hands, and you start an oscillatory motion in it, moving your hand up and down. Then a friend of you take a picture of the rope in motion, looking at the rope laterally. Now let's find the wavelength and amplitude. Amplitude is "The distance from the center of the oscillation of the rope (when the rope was not in motion) to its high or low point", or the vertical displacement, in our experiment. On the other hand, wavelength is "The distance between one high point /low point and the next high point /low point". Take a look at a photo of a wave in your textbook and you will find the answer as well. ; )
Answer:
the waves in the sea, leaves of the trees, cables in the bridges, pendulum clock
Explanation:
In nature there are many examples of simple harmonic motion, for example.
* The movement of the waves in the sea is an oscillation movement up and down
* The movement of the leaves of the trees when a wind blows and then stops, but the leaf and branches are oscillating
* The movement of the cables in the bridges, especially in the suspension bridges
* The movement of a pendulum clock