One of the methods that are used to separate polymers, aluminium alloys, and steels from one another is the Gravitation Separation method.
One straightforward technique is to run the mixture through a magnet, which will keep the steel particles on the magnet and separate them from the polymer.
What is the Gravitation Separation method?
When it is practicable to separate two components using gravity, i.e., when the combination's constituent parts have different specific weights, gravity separation is a technique used in industry. The components can be in suspension or in a dry granular mixture.
Polymers, Steel and Aluminium alloys can be readily split apart. The technique depends on how the two components are combined. The approach used is gravitational density. Due to the significant difference in relative specific mass values between steel and polymers (which range from 1.0 to 1.5), it is possible to separate them using flotation in a liquid that is safe and has the right density.
Therefore, the Gravitation Separation method is used to separate polymers, aluminium alloys and steels.
To learn more about the Polymer from the given link
brainly.com/question/2494725
#SPJ4
Answer:
0.667 per day.
Explanation:
Our values here are

Degradation constant=k and is unknown.
We calculate the concentration through the formula,

Replacing values we have

That is the degradation constant of Z-contaminant
Answer:
T = 5416.67 N
T = -2083.5 N
T = 0
Explanation:
Forward thrust has positive values and reverse thrust has negative values.
part a
Flight speed u = ( 150 km / h ) / 3.6 = 41.67 km / s
The thrust force represents the horizontal or x-component of momentum equation:

Answer: The thrust force T = 5416.67 N
part b
Now the exhaust velocity is now vertical due to reverse thrust application, then it has a zero horizontal component, thus thrust equation is:

Answer: The thrust force T = -2083.5 N reverse direction
part c
Now the exhaust velocity and flight velocity is zero, then it has a zero horizontal component, thus thrust is also zero as there is no difference in two velocities in x direction.
Answer: T = 0 N
Answer:
c) 1.75 g/cm³
Explanation:
Given that
Radii of the A ion, r(c) = 0.137 nm
Radii of the X ion, r(a) = 0.241 nm
Atomic weight of the A ion, A(c) = 22.7 g/mol
Atomic weight of the X ion, A(a) = 91.4 g/mol
Avogadro's number, N = 6.02*10^23 per mol
Solution is attached below
Answer:
it is f all of the above
Explanation:
let me know if im right
im not positive if im right but i should be right