Answer:
Following are the proving to this question:
Explanation:
using the energy equation for entry and exit value
:

where




L.H.S = R.H.S
Answer:
R=1923Ω
Explanation:
Resistivity(R) of copper wire at 20 degrees Celsius is 1.72x10^-8Ωm.
Coil length(L) of the wire=37.0m
Cross-sectional area of the conductor or wire (A) = πr^2
A= π * (2.053/1000)/2=3.31*10^-6
To calculate for the resistance (R):
R=ρ*L/A
R=(1.72*10^8)*(37.0)/(3.31*10^-6)
R=1922.65Ω
Approximately, R=1923Ω
Answer:
Schematics
Explanation:
A schematic is a detailed structured diagram or drawing. It employs illustrations to help the viewer understand detailed information on the machine or object being described. Its main aim is not to help the observer know what the object looks like physically. It is rather aimed at helping the viewer know how the machine works. This is achieved by only including key and important details to the drawing.
It is most times used in the blueprint and user guides of machines and gadgets used in the home to help users know how these things work so that they can do little fixings should there be such needs.
They do in fact heat up while receiving energy.
I don’t know how to answer :’(