The wavelength of the note is

. Since the speed of the wave is the speed of sound,

, the frequency of the note is

Then, we know that the frequency of a vibrating string is related to the tension T of the string and its length L by

where

is the linear mass density of our string.
Using the value of the tension, T=160 N, and the frequency we just found, we can calculate the length of the string, L:
Answer:
B. Hold each type of fabric over a candle flame and time how long it takes for the fabric to start to burn.
Explanation:
In order to find the final velocity of the skier and the trash can lid, we may apply the principle of conservation of momentum, which states that the total momentum of a system remains constant. Mathematically, in this case:
m₁v₁ + m₂v₂ = m₃v₃
Where m₃ and v₃ are the combined mass and velocity.
75*3 + 10*2 = (75 + 10)*v₃
v₃ = 2.88 m/s
The final velocity is 2.88 m/s
The sensation of a frequency is commonly referred to as the pitch of a sound. A high pitch sound corresponds to a high frequency sound wave and a low pitch sound corresponds to a low frequency sound wave. ... That is, two sound waves sound good when played together if one sound has twice the frequency of the other.