Answer:
In the option(A) moles of HCl left are 0.100 moles which is wrong, making the option incorrect.
Explanation:

Moles of HCl = n
Molarity of HCl = 1.0M
Volume of HCl solution = 30.0 mL = 0.030 L (1 mL = 0.001L)


Moles of Fe = 
According to recation , 1mol of Fe reacts with 2 mol HCl. Then 0.01 mole of Fe will recat with :
of HCl
This means that HCl uis in excess , hence excessive reagent.
Moles of HCl left unreacted :
= 0.030 mol - 0.020 mol = 0.010 mol
But in the option moles of HCl left are 0.100 moles which is wrong, making the option incorrect.
Answer is: there is 2,69·10²³ atoms of bromine.
m(CH₂Br₂) = 39,0 g.
n(CH₂Br₂) = m(CH₂Br₂) ÷ M(CH₂Br₂).
n(CH₂Br₂) = 39 g ÷ 173,83 g/mol.
n(CH₂Br₂) = 0,224 mol.
In one molecule of CH₂Br₂, there is two bromine atoms, so:
n(CH₂Br₂) : n(Br) = 1 : 2.
n(Br) = 0,448 mol.
N(Br) = n(Br) · Na.
N(Br) = 0,448 mol · 6,022·10²³ 1/mol.
n(Br) = 2,69·10²³.
Answer is: electron in 2pz orbital.
The principal quantum number is one
of four quantum numbers which are assigned to each electron in
an atom to describe that electron's state, n=1,2,3... n=2 - <span>the </span>second energy level.<span>
The azimuthal quantum number is a quantum number for
an atomic orbital that determines its orbital angular
momentum and describes the shape of the orbital. l = 0,1...n-1, when l = 1, that is p </span>subshell.
The magnetic quantum number<span>, </span><span>ml, show</span> orbital<span> in which the electron is located, ml = -l...+l, ml = 0 is pz orbital.</span>
The spin quantum number<span>, </span><span>ms</span><span>, is the spin of the electron; ms = +1/2 or -1/2.</span>
I believe You replace the ending of the elements name with -ide. example: magnesium flourine should should be magnesium flouride.