Answer:
Space junk is travelling so fast that a collision with an astronaut or a spacecraft could be disastrous.
Explanation:
Space junk orbits the Earth at speeds of about 28 000 km/h.
That's so fast that even an orbiting fleck of paint has enough kinetic energy to cause impact craters on the surface of a spacecraft. They are even more dangerous to an astronaut on a space walk.
Much of the space debris is larger and more dangerous than a fleck of paint.
One rough estimate of the amount of space debris is
<em> </em><u>Size</u><em> </em> <u>Number of objects</u>
< 1 cm 200 000 000
1 cm to 10 cm 700 000
> 10 cm 30 000
Satellites, etc. 18 000
The chances of collision are small, but any collision can be disastrous.
How does it what. i don’t know if there’s a photo but can’t see it
There are two N≡N bonds and three H–H bonds are in reactants.
Given:
The reaction between nitrogen gas and hydrogen gas.

To find:
Bonds on the reactant side
Solution:

Reactants in the reaction = 
The bond between nitrogen atoms in single
molecule = N≡N (triple bond)
Then in two
molecules = 2 N≡N (triple bonds)
The bond between hydrogen atoms in single
molecule = H-H (single bond)
Then in three
molecules = 3 H-H (single bonds)
Product in the reaction =
The bonds between nitrogen and hydrogen atoms in single
molecule = 3 N-H (single bond)
Then in two
molecules = 6 N-H (single bonds)
So, there are two N≡N bonds and three H–H bonds are in reactants.
Learn more about reactants and products here:
brainly.com/question/21517037?referrer=searchResults
brainly.com/question/20602904?referrer=searchResults
I don’t know, I don’t speak this language
Answer:
Gay-Lussac's law states that pressure and temperature are directly proportional
Explanation:
Gay-Lussac's law states that pressure and temperature are directly proportional. This always occurs if the volume keeps in constant.
n and V are not directly proportional, they are the same.
At Charles Gay Lussac's law
V1 = V2
n1 = n2
T1 < T2
P1 < P2
P1 / T1 = P2 / T2
If the pressure is contant:
V1 / T1 = V2 /T2