Answer:
the correct answer is C
Explanation:
When we express that the scale is 1:30 we mean that the objects of the realization are reduced by a factor of 30 in the graph, for example a distance of 30 cm in the graph is represented by a distance of 1 cm.
Therefore something that in the graph has n value to bring it to real size must be multiplied by the scale.
Applying this to our case if there is
10 boulder on the chart
in reality there are #_boulder = 10 30
#_boulder = 300 boulder
so the correct answer is C
The phase is called 3rd quarter.
Hope this helps:)
Answer:
probably the trip where it took u 5 seconds
This is a uniform rectilinear motion (MRU) exercise.
To start solving this exercise, we obtain the following data:
<h3><u>
Data:</u></h3>
- v = 4.6 m/s
- d = ¿?
- t = 10 sec
To calculate distance, speed is multiplied by time.
We apply the following formula: d = v * t.
We substitute the data in the formula: the <u>speed is equal to 4.6 m/s,</u> the <u>time is equal to 10 s</u>, which is left as follows:


Therefore, the speed at 10 seconds is 46 meters.

In a transverse wave:
- Oscillations are perpendicular to the direction of energy travelling
- Frequency is the amount of complete waves passing a certain point in one second (measured in hertz, Hz)
- Wavelength is the distance from any point on one wave to the same point on the following wave
- The amplitude is the maximum displacement of the particles from their average position (and be measured from the horizontal mid-point of the wave to either the peak or trough)
There isn't always a defined relationship between these features. However, frequency × wavelength = velocity of the wave.