Answer:
c. You would weigh less on planet A because the distance between
you and the planet's center of gravity would be smaller.
Explanation:
The statement that best describes your weight on each planet is that you would weigh less on planet A because the distance between you and the planet's center of gravity would be smaller.
- This is based on Newton's law of universal gravitation which states that "the force of gravity between two bodies is directly proportional to the product of their masses and inversely proportional to the square of the distances between them".
Since weight is dependent on the force of gravity and mass, the planet with more gravitational pull will have masses on them weighing more.
- Since the distance between the person and the center of the planet is smaller, therefore, the weight will be lesser.
Answer:
<h2>7.5 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question
mass = 2.5 kg
acceleration = 3.0 m/s²
We have
force = 2.5 × 3.0 = 7.5
We have the final answer as
<h3>7.5 N</h3>
Hope this helps you
The frequency of a wave is the number of waves that passes through a point in a certain time. The less waves that pass in a period of time the lower the frequency of the wave. The more waves that pass in a period of time the higher the frequency of the wave. When measuring wave length the time period used is usually one second.
Answer:
Explanation:
Let h be the height .
initial velocity in first case u = 0
final velocity v = 6 m /s
acceleration due to gravity g = 9.8 m /s²
v² = u² + 2 g h
6² = 0 + 2 x 9.8 x h
h = 1.837 m .
For second case u = 3 m /s
v² = u² + 2 gh
= 3² + 2 x 1.837 x 9.8
= 9 + 36
= 45 m
v = 6.7 m /s
Answer:
(a) 62.5 m
(b) 7.14 s
Explanation:
initial speed, u = 35 m/s
g = 9.8 m/s^2
(a) Let the rocket raises upto height h and at maximum height the speed is zero.
Use third equation of motion
h = 62.5 m
Thus, the rocket goes upto a height of 62.5 m.
(b) Let the rocket takes time t to reach to maximum height.
By use of first equation of motion
v = u + at
0 = 35 - 9.8 t
t = 3.57 s
The total time spent by the rocket in air = 2 t = 2 x 3.57 = 7.14 second.