Answer: 3.49 s
Explanation:
We can solve this problem with the following equation of motion:
(1)
Where:
is the final height of the ball
is the initial height of the ball
is the initial velocity (the ball was dropped)
is the acceleratio due gravity
is the time
Isolating
:
(2)
(3)
Finally we find the time the ball is in the air:
(4)
Answer:
g' = 10.12m/s^2
Explanation:
In order to calculate the acceleration due to gravity at the top of the mountain, you first calculate the length of the pendulum, by using the information about the period at the sea level.
You use the following formula:
(1)
l: length of the pendulum = ?
g: acceleration due to gravity at sea level = 9.79m/s^2
T: period of the pendulum at sea level = 1.2s
You solve for l in the equation (1):

Next, you use the information about the length of the pendulum and the period at the top of the mountain, to calculate the acceleration due to gravity in such a place:

g': acceleration due to gravity at the top of the mountain
T': new period of the pendulum

The acceleration due to gravity at the top of the mountain is 10.12m/s^2
To be effective, an exercise program must have an aerobic
form, portion for strength enhancement, and a stretching part. These three
things are essential because they each target specific improvements in your
body. For example, aerobics can help you maintain your body’s fitness or make
it better. This usually targets your heart rate and ensures that you burn fat
while doing so. Second is strength enhancement; this will make sure that your
body becomes better – not just in a feeble state. Lastly is stretching, your
muscles are like rubber bands. You cannot end or start your exercise program
without stretching simply because they can damage your muscles as well. Aside
from this, stretching can stop you from shocking your body into a physical
activity, which may cause you to lose consciousness or have undue stress and fatigue.
True, I just learned this a week ago. Is this for Chemistry?