Explanation:
It is given that,
Distance between wires, d = 3.5 mm = 0.0035 m
Power of light bulb, P = 100 W
Potential difference, V = 120 V
(a) We need to find the force per unit length each wire of the cord exert on the other. It is given by :

Power, P = V × I

This gives, 


(b) Since, the two wires carry equal currents in opposite directions. So, teh force is repulsive.
(c) This force is negligible.
Hence, this is the required solution.
Answer:
initial velocity is v = 4.95 m / s
Explanation:
To solve this exercise we use the projectile launch ratios, when the block leaves the hill its speed is horizontal, let's find the time it takes to fall to the other point.
Initial vertical velocity is zero
y = y₀ + v_{oy} t - ½ g t²
y-y₀ = 0 -1/2 g t²
t = 
calculate
t =
t = 2.02 s
with this time we can substitute in the horizontal displacement equation
x = v₀ₓ t
v₀ₓ = x / t
suppose that the distance between the two points is x = 10 m
v₀ₓ = 10 / 2.02
v₀ₓ = 4.95 m / s
initial velocity is v = 4.95 m / s
The answer is B. Old cells need to create new cells to replenish the ones that were lost.
Answer:
3658.24m
Explanation:
Hello!
the first thing that we must be clear about is that the train moves with constant acceleration
A body that moves with constant acceleration means that it moves in "a uniformly accelerated motion", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.
When performing a mathematical demonstration, it is found that the equations that define this movement are as follows.

Vf = final speed
=160km/h=44.4m/s
Vo = Initial speed
=42.9km/h=11.92m/s
A = acceleration
=0.25m/s^2
X = displacement
solving

the distance traveled by the train is 3658.24m
Answer:
9:36 and how far it will travel is 26 minutes