Answers:
a) 5400000 J
b) 45.92 m
Explanation:
a) The kinetic energy
of an object is given by:

Where:
is the mass of the train
is the speed of the train
Solving the equation:

This is the train's kinetic energy at its top speed
b) Now, according to the Conservation of Energy Law, the total initial energy is equal to the total final energy:


Where:
is the train's initial kinetic energy
is the train's initial potential energy
is the train's final kinetic energy
is the train's final potential energy, where
is the acceleration due gravity and
is the height.
Rewriting the equation with the given values:

Finding
:
Answer:
SI unit of k (spring constant) = N/m
Explanation:
We have expression for force in a spring extended by x m given by
F = kx
Where k is the spring constant value.
Taking units on both sides
Unit of F = Unit of k x Unit of x
N = Unit of k x m
Unit of k = N/m
SI unit of k (spring constant) = N/m
Answer: Impulse = 4 kgm/s
Explanation:
From the question, you're given the following parameters:
Momentum P1 = 12 kgm/s
Momentum P2 = 16 kgm/s
Time t = 0.2 s
According to second law of motion,
Force F = change in momentum ÷ time
That is
F = (P2 - P1)/t
Cross multiply
Ft = P2 - P1
Where Ft = impulse
Substitute P1 and P2 into the formula
Impulse = 16 - 12 = 4 kgm/s
The magnitude of the impulse is therefore 4 kgm/s.
Well, the acceleration is the difference of speeds divided by the time period.

.
One rev/s is

, so our final result is

.