Answer:
%Open the file.
fID = fopen('parts_inv.dat');
%Read from the file.
data = fscanf(fID,'%d\t%f\t%d',[3,inf]);
%Close
fclose(fID);
%Restore the data.
data = data';
%Get the size
[rs, cs] = size(data);
%Set value.
invCost = 0;
%Loop
for rw = 1 : rs
%Find cost
invCost = invCost + (data(rw, 2) * data(rw, 3));
%Loop end
end
%Display the cost.
fprintf('Total cost: %4.2f\n\n', invCost);
Explanation:
Newton’s 2nd law states that Force is equal to
the product of mass (m) and acceleration (a):
F = m a --->
1
While in magnetic forces, force can also be expressed as:
F = q v B --->
2
where,
q = total charge
v = velocity = 45 cm / s = 0.45 m / s
B = the magnetic field = 85 T
First we solve for the total charge, q:
q = 3.8 × 10^-23 g (1 mol / 23 g) (6.022 × 10^23 electrons / mol) (1.602 ×
10^-19 C / electron)
q = 1.594 × 10^-19 C
We equate equations 1 and 2 then solve for acceleration a:
m a = q v B
a = q v B / m
a = [1.594 × 10^-19 C * 0.45 m / s * 85 T] / 3.8 × 10-26 kg
a = 160,437,862.2 m/s^2
Therefore the maximum acceleration of Na ions is about 160 × 10^6 m/s^2.
Answer:
changes electrical energy into mechanical energy
Answer:
Sum of the forces will be equal to 3.479 N
Explanation:
We have given two same forces are oriented at an angle of 38°
Magnitude of each force is given 
We have to find the sum of the forces
Sum of the forces will be equal to

So sum of the forces will be equal to 
So sum of the force will be equal to 3.479 N