Answer:
First of all, the equation is typed wrong so it can easily be misinterpreted
Ethane (CH4) + Oxygen gas (O2) would give us Carbon Dioxide (CO2) and WATER (H2O)
CH4 + 2O2 -----> CO2 + 2H2O
And this is a combustion reaction since we have oxygen as a reactant and carbon dioxide and water as products.
C. Magma from venus mantle erupted as lava.
Explanation:
A volcano is a land form which results from the eruption of molten rocks (lava) on the surface. Volcanic rocks are a special type of igneous rock that forms when molten rock cools and solidifies on the surface.
For a planet like Venus which is presently not active and little to no movement occurs within the plates, the volcanisim must have occurred when the planet was relatively young and it must have been millions of years ago.
It is widely believed that Venus was geologically active in times past. Mantle generated lava must have solidified on the surface in times past to have formed the volcano.
Evaluating other options:
Impact of space objects on Venus would lead to the formation of a crater which is a depression on the surface. The rock would be mostly metamorphic.
If water was ever present in Venus, they would have produced sedimentary rocks instead. The erosive power of water is not high enough to cut through the crust. Also, water would not aid the formation of volcanoes.
Heat is not enough to from volcanoes. Other factors are also in play.
Answer:
= 19
ΔG° of the reaction forming glucose 6-phosphate = -7295.06 J
ΔG° of the reaction under cellular conditions = 10817.46 J
Explanation:
Glucose 1-phosphate ⇄ Glucose 6-phosphate
Given that: at equilibrium, 95% glucose 6-phospate is present, that implies that we 5% for glucose 1-phosphate
So, the equilibrium constant
can be calculated as:
![= \frac{[glucose-6-phosphate]}{[glucose-1-[phosphate]}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B%5Bglucose-6-phosphate%5D%7D%7B%5Bglucose-1-%5Bphosphate%5D%7D)


= 19
The formula for calculating ΔG° is shown below as:
ΔG° = - RTinK
ΔG° = - (8.314 Jmol⁻¹ k⁻¹ × 298 k × 1n(19))
ΔG° = 7295.05957 J
ΔG°≅ - 7295.06 J
b)
Given that; the concentration for glucose 1-phosphate = 1.090 x 10⁻² M
the concentration of glucose 6-phosphate is 1.395 x 10⁻⁴ M
Equilibrium constant
can be calculated as:
![= \frac{[glucose-6-phosphate]}{[glucose-1-[phosphate]}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B%5Bglucose-6-phosphate%5D%7D%7B%5Bglucose-1-%5Bphosphate%5D%7D)

0.01279816514 M
0.0127 M
ΔG° = - RTinK
ΔG° = -(8.314*298*In(0.0127)
ΔG° = 10817.45913 J
ΔG° = 10817.46 J
A is correct hope this helps
Answer:
Thermocline separate these two layers.
Explanation:
Ocean consist of three major layers on the basis of temperature.
1. Upper layer
2. Deep layer
3. Thermocline
Upper layer:
The first layer is called upper layer which is present on the surface and directly expose to the sun. The sun heat up this upper layer easily and warm it.
Deep layer
The deep layer is present below the thermocline. It is present in deep where sunlight can not approach to it and its temperature remain low.
Thermocline
It is the middle layer, present between the upper and deep layer. It separated the upper layer from deep layer. Its upper portion is warmer while lower is colder.