The boiling point of the fluid depends on the intermolecular forces between the fluid atoms and molécules, as these forces must be disrupted to switch from a fluid to a gas. The stronger the intermolecular forces, the greater the point of boiling.
Explanation:
Use the density formula to determine the volume of the piece of metal.
density
=
mass
volume
Rearrange the equation to isolate volume.
volume
=
mass
density
volume
=
147
g
7.00
g
mL
=
21.0 mL
The final volume in the cylinder after adding the piece of metal is
20.0 mL
+
21.0 mL
=
41.0 mL
Answer:
Moon has to be in-between the Earth and the Sun.
2. Moon's umbra should sweep your place.
3. Latitude and longitude of your place should be within the befitting limits.
A high concentration of water has <u>fewer</u> dissolved particles than a low water concentration.
Most cell membranes are not as easily permeable to many dissolved compounds as water is. There is a quick and constant flow of water. From one area with less dissolved matter to another with more, water transports NET. Or, if you want, from an area with a lot of water to one with little water. The terms isotonic, hypotonic, and hypertonic refer to the concentration of dissolved material. In a medium, such as the extracellular fluid, every distinct material has a concentration gradient that is unique from the gradients of other substances. Every substance will diffuse in line with that gradient as well.
Learn more about Concentration here-
brainly.com/question/10725862
#SPJ4
NaOH reacts with CH3COOH in 1:1 molar ratio to produce CH3COONa
NaOH + CH3COOH → CH3COONa + H2O
Mol CH3COOH in 52.0mL of 0.35M solution = 52.0/1000*0.35 = 0.0182 mol CH3COOH
Mol NaOH in 19.0mL of 0.40M solution = 19.0/1000*0.40 = 0.0076 mol NaOH
These will react to produce 0.0076 mol CH3COONa and there will be 0.0182 - 0.0076 = 0.0106 mol CH3COOH remaining in solution unreacted . Total volume of solution = 52.0+19.0 = 71mL or 0.071L
Molarity of CH3COOH = 0.0106/0.071 = 0.1493M
CH3COONa = 0.0076 / 0.071 = 0.1070M
pKa acetic acid = - log Ka = -log 1.8*10^-5 = 4.74.
pH using Henderson - Hasselbalch equation:
pH = pKa + log ([salt]/[acid])
pH = 4.74 + log ( 0.1070/0.1493)
pH = 4.74 + log 0.717
pH = 4.74 + (-0.14)
pH = 4.60.