When we shake a mango tree, the mangoes fall down. It is because when we shake the tree, the mango tend to be rest due to inertia where as the branches are in motion. That is why the mangoes tend to be at rest due to inertia where as the branches are in the motion.
By definition, Ampere is a unit of current which is a measure of the amount of charge passing through a point in a circuit per unit of time, with an equivalent charge of 1.602 x 10^(-19) Coulomb per electron. To determine the number of electrons passing through the heater, we use the definition of the current. We calculate as follows:
13.5 A = 13.5 C per second
Charge = 13.5 C/s (10 min) ( 60 s / 1 min)
Charge = 8100 C
Number of electrons = 8100 C / 1.602 x 10^(-19) C per electron
Number of electrons = 5.1 x 10^22 electrons
Therefore, there are 5.1 x10^22 electrons that assed through the heater for 10 minutes.
Answer:
1030 mph
Explanation:
The new velocity equals the initial velocity plus the wind velocity.
First, in the x (east) direction:
vₓ = 335 mph + 711 cos 19° mph
vₓ = 1007 mph
And in the y (north) direction:
vᵧ = 0 mph + 711 sin 19° mph
vᵧ = 231 mph
The net speed can be found with Pythagorean theorem:
v² = vₓ² + vᵧ²
v² = (1007 mph)² + (231 mph)²
v ≈ 1030 mph
Answer:
2.47 m
Explanation:
Let's calculate first the time it takes for the ball to cover the horizontal distance that separates the starting point from the crossbar of d = 52 m.
The horizontal velocity of the ball is constant:

and the time taken to cover the horizontal distance d is

So this is the time the ball takes to reach the horizontal position of the crossbar.
The vertical position of the ball at time t is given by

where
is the initial vertical velocity
g = 9.8 m/s^2 is the acceleration of gravity
And substituting t = 2.56 s, we find the vertical position of the ball when it is above the crossbar:

The height of the crossbar is h = 3.05 m, so the ball passes

above the crossbar.