The distance that the canoe moves in this process is 1.29 meters.
We first have to find the center of mass

Where
Ms = Woman's mass = 45
Mc = Canoe's mass = 60kg
Xs = position from left= 1 cm
Xc = position from left end of canoe's mass = 2.5cm
When we put these values into the equation we have:

The center of gravity lies at the center of this boat. Therefore,

5.00 - 1. 00 = 4 meters

To get the distance that is moved by this canoe
distance = 3.143-1.857
= 1.286
≈ 1.29 meters
The distance that the canoe moves in this process is 1.29 meters.
Read more on brainly.com/question/13198009?referrer=searchResults
Answer:
Gravity
Explanation:
When the ball is falling to the ground, there is only one force- gravity. In some cases, there may be air resistance, but that seems to be neglected here.
Normal force:
Cannot be included. Normal force is only applicable when object is on a surface, and it acts perpendicular to the surface. Since the ball is falling, there is no surface, and therefore no normal force. This question gives you unnecessary information, designed to trick you. Please remember when normal force is applicable.
Friction force:
Also only applicable when object is moving, and is on the table. Friction only applies when there is an applied force. There is no applied force when the ball is falling, so therefore no friction force.
Force of fall:
First of all, what is this? There is nothing called force of fall.
Gravity:
This is the only one that applies. Just draw a vector arrow from the bottom of the ball and label it mg (acceleration due to gravity).
Answer:
All the observers are correct.
Explanation:
This is simply a problem of reference frames from which the motion of the book is being viewed by the various observers.
From their various reference frames, they are all correct.
Observer A must be in the inertial reference frame.
<em>Observers who can explain the behavior of the book and the car by using the relationship between the sum of the forces and changing velocity are said to be observers in inertial reference frames.</em>
This is clearly shown by what observer A noticed. There was a relative motion between the book and the car as she pointed out, making her to be in an inertial reference frame.
<em>Similarly, observers in inertial reference frames can also explain the changes in velocity of objects by considering the forces exerted on them by other objects.</em>
This is shown by observer B as he is able to notice how the force of the car affects the velocity of the book.
Observer C is actually in a non-inertial reference frame, as newtons law of force motion relationship are no longer observed. This occurs in the non inertial reference frame.
Answer:
Time, t = 13.34 seconds.
Explanation:
Given the following data;
Initial velocity, u = 85km/hr to meters per seconds = 85*1000/3600 = 23.61 m/s
Final velocity, v = 45km/hr to meters per seconds = 45*1000/3600 = 12.5 m/s
Acceleration, a = -3 km/hr/sec to meters per seconds square = -3*1000/3600 = -0.833m/s²
To find the time;
Acceleration = (v - u)/t
-0.833 = (12.5 - 23.61)/t
-0.833t = -11.11
t = 11.11/0.833
Time, t = 13.34 seconds.