<h2>Answer with Explanation </h2>
The Oscillating Universe Theory is a cosmological model that consolidates both the Big Bang and the Big Crunch as a major aspect of a repeating occasion. That is, in the event that this hypothesis remains constant, the Universe in which we live in exists between a Big Bang and a Big Crunch.
As such, our universe can be the first of a conceivable arrangement of universes or it tends to be the nth universe in the arrangement.
As we probably are aware, in the Big Bang Theory, the Universe is accepted to extend from a hot, exceptionally thick, and little element. Actually, on the off chance that we extrapolate back to the snapshot of the Big Bang, we can achieve a point of peculiarity described by unendingly high vitality and thickness, just as zero volume.
This portrayal would just mean a certain something every one of the laws of material science will be tossed out of the window. This is naturally unsuitable to physicists. To exacerbate the situation, a few cosmologists even trust that the Universe will, in the end, achieve the greatest purpose of development and that once this occurs, it will at that point crumple into itself.
This will basically prompt indistinguishable conditions from when we extrapolate back to the snapshot of the Big Bang. To cure this difficulty, a few researchers are suggesting that maybe the Universe won't achieve the purpose of peculiarity all things considered.
Sound waves <span>can NOT travel through the vacuum of space?</span>
It's called rifling, to stabilise the bullet.
Represented elements not discovered in this time
Answer:
This will require 266.9 of heat energy.
Explanation:
To calculate the energy required to raise the temperature of any given substance, here's what you require:The mass of the material, m The temperature change that occurs, ΔT The specific heat capacity of the material,
c
(which you can look up). This is the amount of heat required to raise 1 gram of that substance by 1°C.
Here is a source of values of
c for different substances:
Once you have all that, this is the equation:
Q=m×c×ΔT(Q is usually used to symbolize that heat required in a case like this.)For water, the value of c is 4.186g°C So, Q=750×4.186×85=266=858=266.858