Answer: +178.3 kJ
Explanation:
The chemical equation follows:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(1\times \Delta H^o_f_{(CaO(s))})+(1\times \Delta H^0f_{CO_2}]-[(1\times \Delta H^o_f_{(CaCO_3(s))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CaO%28s%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H%5E0f_%7BCO_2%7D%5D-%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CaCO_3%28s%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(1\times (-635.1))+(1\times (-393.5))]-[(1\times (-1206.9))]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-635.1%29%29%2B%281%5Ctimes%20%28-393.5%29%29%5D-%5B%281%5Ctimes%20%28-1206.9%29%29%5D)
The DH°rxn for the decomposition of calcium carbonate to calcium oxide and carbon dioxide is +178.3 kJ
Answer:
105.9888 g/mol
Explanation:
The molar mass of sodium carbonate is 105.9888 g/mol (grams per mole)
IVA: nonmetal/other metals VIIA:halogens VIII: Nobel Gases
It would be the controlled variable, which is a baseline to compare your other variables too.
Hope this helps!