<span>The acceleration of the bullet is called ACTION.
</span>Formally stated, Newton's third law<span> is: For every action, there is an equal and opposite reaction. The statement means that in every interaction, there is a pair of forces acting on the two interacting objects. The size of the forces on the first object equals the size of the force on the second object.
</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer:
is the drop in the water temperature.
Explanation:
Given:
- mass of ice,

- mass of water,

Assuming the initial temperature of the ice to be 0° C.
<u>Apply the conservation of energy:</u>
- Heat absorbed by the ice for melting is equal to the heat lost from water to melt ice.
<u>Now from the heat equation:</u>

......................(1)
where:
latent heat of fusion of ice 
specific heat of water 
change in temperature
Putting values in eq. (1):

is the drop in the water temperature.
Answer:
18m/s^2
Explanation:
Vf = Vi + at
t = distance/ average velocity
(120 + 0)/2 = 60 (average velocity)
400m/60m/s = 20/3 s
insert into first equation:
120 = 0 + a(20/3)
360 = 20a
18 = a
HOPE THIS HELPS!!!
Answer:
The velocity with which the jumper strike the mat in the landing area is 6.26 m/s.
Explanation:
It is given that,
A high jumper jumps over a bar that is 2 m above the mat, h = 2 m
We need to find the velocity with which the jumper strike the mat in the landing area. It is a case of conservation of energy. let v is the velocity. it is given by :

g is acceleration due to gravity

v = 6.26 m/s
So, the velocity with which the jumper strike the mat in the landing area is 6.26 m/s. Hence, this is the required solution.