Answer:
F(x) = 0 ; x < 0
0.064 ; 0 ≤ x < 1
0.352 ; 1 ≤ x < 2
0.784 ; 2 ≤ x < 3
1 ; x ≥ 3
Explanation:
Each wafer is classified as pass or fail.
The wafers are independent.
Then, we can modelate X : ''Number of wafers that pass the test'' as a Binomial random variable.
X ~ Bi(n,p)
Where n = 3 and p = 0.6 is the success probability
The probatility function is given by :

Where
is the combinatorial number

Let's calculate f(x) :




For the cumulative distribution function that we are looking for :



The cumulative distribution function for X is :
F(x) = 0 ; x < 0
0.064 ; 0 ≤ x < 1
0.352 ; 1 ≤ x < 2
0.784 ; 2 ≤ x < 3
1 ; x ≥ 3
Answer:
work will be positive when it is under polytropic expansion process
Explanation:
It states a polytropic process with n equal to 1.67. there is a polytropic expansion that mean work is positive and if it was polytropic compression then it would be negative
Also work during the process of polytropic is given as
the work will be positive when it is under the polytropic expansion process
Answer:

So, Ma < 1 Flow is Subsonic
Explanation:
Mach Number:
Mach Number is the ratio of speed of the object to the speed of the sound. It is used to categorize the speed of the object on the basis of mach number as sonic, supersonic and hyper sonic. (It is a unit less quantity)
Mach < 1 Subsonic
Mach > 1 Supersonic
Ma= Speed of the object/Speed of the sound

So, Ma < 1 Flow is Subsonic
Answer:
(a) the subtransient current through the breaker in per-unit and in kA rms = 71316.39kA
(b) the rms asymmetrical fault current the breaker interrupts, assuming maximum dc offset. = 152KA
Explanation:
check the attached files for explanation
Okay sure.
I’ll 1)chords
2)pulse
3)aerophone
4) the answer is C
5)rhythm
Pretty sure those are the answers