The finagling in the hole
Answer:
Total partial pressure, Pt = 821 mm Hg
Partial pressure of Helium, P1 = 105 mm Hg
Partial pressure of Nitrogen, P2 = 312 mm Hg
Partial pressure of Oxygen, P3 = ? mm Hg
According to Dalton's law of Partial pressures,
Pt = P1 + P2 + P3
So, <u>P3 = 404 mm Hg</u>
The answer for the following problem is mentioned below.
- <u><em>Therefore the final volume of the gas is 52.7 ml.</em></u>
Explanation:
Given:
Initial pressure (
) = 290 kPa
Final pressure (
) = 104 kPa
Initial volume (
) = 18.9 ml
To find:
Final volume (
)
We know;
From the ideal gas equation;
P × V = n × R × T
where;
P represents the pressure of the gas
V represents the volume of gas
n represents the no of the moles
R represents the universal gas constant
T represents the temperature of the gas
So;
P × V = constant
P ∝ 
From the above equation;

represents the initial pressure of the gas
represents the final pressure of the gas
represents the initial volume of the gas
represents the final volume of the gas
Substituting the values of the above equation;
= 
= 52.7 ml
<u><em>Therefore the final volume of the gas is 52.7 ml.</em></u>
B) 40%
The balanced equation indicates that for every 3 moles of H2 used, 2 moles of NH3 will be produced. So the reaction if it had 100% yield would produce (2.00 / 3) * 2 = 1.333333333 moles of NH3. But only 0.54 moles were produced. So the percent yield is 0.54 / 1.3333 = 0.405 = 40.5%. This is a close enough match to option "b" to be considered correct.
Answer:
82.97 K
Explanation:
Applying,
PV/T = P'V'/T'................ Equation 1
Where P = initial pressure, T = Initial temperature, V = Initial Volume, P' = Final pressure, V' = Final Volume, T' = Final Temperature.
Make T' the subject of formula in equation 1
T' = P'V'T/PV................ Equation 2
From the question,
Given: P = 877 mmHg = (877×0.001316) atm = 1.154 atm, T = 222.2 K, V = 7.9 L, P' = 0.327 atm, V' = 10.41 L
Substitute these values into equation 2
T' = (0.327×10.41×222.2)/(1.154×7.9)
T' = 82.97 K
Hence the new temperature is 82.97 K