The most common method astronomers use to determine the composition of stars, planets, and other objects is spectroscopy. This process utilizes instruments with a grating that spreads out the light from an object by wavelength. This spread-out light is called a spectrum. Every element has a unique fingerprint that allows researchers to determine what it is made of.
The fingerprint often appears as the absorption of light. Every atom has electrons, and these electrons like to stay in their lowest-energy levels. But when photons carrying energy hit an electron, they can push it to higher energy levels. This is absorption, and each element’s electrons absorb light at specific wavelengths related to the difference between energy levels in that atom. But the electrons want to return to their original levels, so they don’t hold onto the energy for long. When they emit the energy, they release photons with exactly the same wavelengths of light that were absorbed in the first place. An electron can release this light in any direction, so most of the light is emitted in directions away from our line of sight. Therefore, a dark line appears in the spectrum at that particular wavelength.
Because the wavelengths at which absorption lines occur are unique for each element, astronomers can measure the position of the lines to determine which elements are present in a target. The amount of light that is absorbed can also provide information about how much of each element is present.
Answer:
19.8% of Nitrogen
Explanation:
In the Al(NO₃)₃ there are:
1 atom of Al
3 atoms of N
And 9 atoms of O
The molar mass of Al(NO₃)₃ is:
1 Al * (26.98g/mol) = 26.98g/mol
3 N * (14g/mol) = 42g/mol
9 O * (16g/mol) = 144g/mol
26.98 + 42 + 144 = 212.98g/mol
We can do a conversion using these molar masses to find the mass of nitrogen is the sample, that is:
2.57g * (42g/mol / 212.98g/mol) =
0.51g N
Percent composition of nitrogen is:
0.51g N / 2.57g * 100
= 19.8% of Nitrogen
Answer:
All of the elements in a period have the same number of atomic orbitals. For example, every element in the top row (the first period) has one orbital for its electrons. All of the elements in the second row (the second period) have two orbitals for their electrons.
Explanation:
Answer:
Hailey the answer is D.
Explanation:
if liquid to solid is exothermic then then the other way around would be endorhermic