Kinetic energy of pieces A and B are 2724 Joule and 5176 Joule respectively.
<h3>What is the relation between the masses of A and B?</h3>
Mass of piece B = Mb
- Velocities of pieces A and B are Va and Vb respectively.
- As per conservation of momentum,
Ma×Va = Mb×Vb
So, 1.9Mb × Va = Mb×Vb
=> 1.9Va = Vb
<h3>What are the kinetic energy of piece A and B?</h3>
- Expression of kinetic energy of piece A = 1/2 × Ma × Va²
- Kinetic energy of piece B = 1/2 × Mb × Vb²
- Total kinetic energy= 7900J
=>1/2 × Ma × Va² + 1/2 × Mb × Vb² = 7900
=> 1/2 × Ma × Va² + 1/2 × (Ma/1.9) × (1.9Va)² = 7900
=> 1/2 × Ma × Va² ×(1+1.9) = 7900 j
=> 1/2 × Ma × Va² = 7900/2.9 = 2724 Joule
- Kinetic energy of piece B = 7900 - 2724 = 5176 Joule
Thus, we can conclude that the kinetic energy of piece A and B are 2724 Joule and 5176 Joule respectively.
Learn more about the kinetic energy here:
brainly.com/question/25959744
#SPJ1
The light bulb would glow brighter.
<h3>What is Resistance?</h3>
a force that works against a body's direction of motion and seeks to stop or slow down motion, such as friction. a measure of how much a material prevents an electric current from flowing as a result of a voltage.
What is the law of resistance?
Resistance and Ohm's Law. According to Ohm's law, the resistance of the circuit and the current or energy travelling through the resistance are both exactly proportional to the voltage or potential difference between two places.
The current would grow since it is exactly proportionate to the voltage, increasing the light bulb's brilliance, or simply making it brighter.
to learn more about Resistance go to - brainly.com/question/15728236
#SPJ4
The particular temperature at which vaporisation occurs is known as the boiling point of liquid. Volume of water increases when it boils at 100° C. 1 cm3 of water at 100 ° C becomes 1760 cm3 of steam at 100 ° C.
Hope it helps!!!!!!!!!!!!!!!!!!!!! ~~~~~~~~~~~~~~~~~~~
ಥ‿ಥ
Answer is A of course lol Fire needs oxygen as an essential fuel to burn.
V=IR
V=15x11
V=165ohms
I don’t quite remember the unit
Ohms law