Answer:
A) E° = 4.40 V
B) ΔG° = -8.49 × 10⁵ J
Explanation:
Let's consider the following redox reaction.
2 Li(s) +Cl₂(g) → 2 Li⁺(aq) + 2 Cl⁻(aq)
We can write the corresponding half-reactions.
Cathode (reduction): Cl₂(g) + 2 e⁻ → 2 Cl⁻(aq) E°red = 1.36 V
Anode (oxidation): 2 Li(s) → 2 Li⁺(aq) + 2 e⁻ E°red = -3.04
<em>A) Calculate the cell potential of this reaction under standard reaction conditions.</em>
The standard cell potential (E°) is the difference between the reduction potential of the cathode and the reduction potential of the anode.
E° = E°red, cat - E°red, an = 1.36 V - (-3.04 V) 4.40 V
<em>B) Calculate the free energy ΔG° of the reaction.</em>
We can calculate Gibbs free energy (ΔG°) using the following expression.
ΔG° = -n.F.E°
where,
n are the moles of electrons transferred
F is Faraday's constant
ΔG° = - 2 mol × (96468 J/V.mol) × 4.40 V = -8.49 × 10⁵ J
Answer:
The solubility of methylacetylene is 0,11 g L⁻¹
Explanation:
Henry's law is a gas law that states that the amount of dissolved gas in a liquid is proportional to its partial pressure above the liquid.
The formula is:
C = kH P
Where C is solubility of the gas (In mol/L)
kH is Henry constant (9,23x10⁻² mol L⁻¹ atm⁻¹)
An P is partial pressure (0,301 atm)
Solving, C = 2,78x10⁻³ mol L⁻¹. In grams per liter:
2,78x10⁻³ mol L⁻¹ₓ
= <em>0,11 g L⁻¹</em>
<em></em>
I hope it helps!
Both fission and fusion are nuclear reactions that produce energy, but the applications are not the same. Fission is the splitting of a heavy, unstable nucleus into two lighter nuclei, and fusion is the process where two light nuclei combine together releasing vast amounts of energy.
Answer:
distance and time are needed to find velocity
<u>Answer:</u> The final volume will be 14.85 L.
<u>Explanation:</u>
To calculate the final volume when temperature increases, we use Charles' Law.
This law states that volume is directly proportional to the temperature of the gas if number of moles and pressure remains constant.

where,
= Initial volume and temperature
= Final volume and temperature
We are given:

Putting values in above equation, we get:


Hence, the final volume of the gas is 14.85L