Write a balance equation for the reaction between the analyte and the titrant.
Calculate the # of moles of titrant using the volume of titrant required and the concentration of titrant.
Calculate the # of moles of analyte using the stoichiometric coefficients of the equation.
Calculate the concentration of the analyte using the number or moles of analyte and the volume of analyte titrated.
Answer:
This cannot be determined without knowing the actual mass of the objects.
Explanation:
its like trying to compare the letter A and letter B
Answer: Option (d) is the correct answer.
Explanation:
It is given that molecular formula is
. Now, we will calculate the degree of unsaturation as follows.
Degree of unsaturation = 
= 
= 9 - 8 + 1
= 2
As the degree of unsaturation comes out to be 2. It means that this compound will contain one ring and one double bond.
Yes, this compound could be an alkyne as for alkyne D.B.E = 2.
But this compound cannot be a cycloalkane because for a cycloalkane D.B.E = 1 which is due to the ring only.
Thus, we can conclude that it is a cycloalkane is not a structural possibility for this hydrocarbon.
Answer:
B
Explanation:
The average kinetic energy of the Substance changes.