Answer:
0 < r < r_exterior B_total =
r > r_exterior B_total = 0
Explanation:
The magnetic field created by the wire can be found using Ampere's law
∫ B. ds = μ₀ I
bold indicates vectors and the current is inside the selected path
outside the inner cable
B₁ (2π r) = μ₀ I
B₁ =
the direction of this field is found by placing the thumb in the direction of the current and the other fingers closed the direction of the magnetic field which is circular in this case.
For the outer shell
for the case r> r_exterior
B₂ = \frac{\mu_o I}{2\pi r}
This current is in the opposite direction to the current in wire 1, so the magnetic field has a rotation in the opposite direction
for the case r <r_exterior
in this case all the current is outside the point of interest, consequently not as there is no internal current, the field produced is zero
B₂ = 0
Now we can find the field created by each part
0 < r < r_exterior
B_total = B₁
B_total =
r > r_exterior
B_total = B₁ -B₂
B_total = 0
Angular velocity is the rate of change of angle of a body, i.e. omega = v / r = (2*pi*r)/ r*t = (2*pi)/ T. where T is the time period of whatever is rotating and r is the radius of the circle. So if a circular disc is spinning at 1 m/s then the angular velocity of it is 2*pi radians/ second.
-The group 7 elements are also known as the halogens.
They include fluorine, chlorine, bromine and iodine, which all have seven
electrons in their outer shell.
-The noble gases
make a group of chemical elements with comparable properties; under standard
conditions, they are all odorless, colorless, monatomic gases with very low
chemical reactivity. The six noble gases that occur naturally are helium, neon,
argon, krypton, xenon, and the radioactive radon. FACT: They can also act like
a glow stick.<span>[ID1] </span>
<span> [ID1]</span>
Answer:
The pressure corresponding to the absolute zero temperature is 0.997atm.
Explanation:
To solve this question, you draw a straight vertical line with the boiling point temperature and pressure on top of the line and the freezing point temperature and pressure on the lower part. The absolute temperature somewhere in the middle of the line with the pressure to be obtained.
So, we have;
0- (-19) / 100 - (-19) = P - 0.9267 / 1.366 - 0.9267
19 / 119 = P - 0.9267 / 0.4393
Cross multiply, we have
19 * 0.4393 = 119(P -0.9267)
8.3467 = 119P - 110.2773
119P = 118.624
P = 0.997 atm
So at 0°C, the pressure of the thermometer is 0.997atm.
Answer:
(A) 12.222 ohm (B) 990 W
Explanation:
We have given the voltage of the heating element V = 110 V
The current in the heating element i = 9 A
(a) According to ohm's law V =iR
So 

(b) The power dissipated in the resistor is given by
So the power dissipated = 990 W