Just use the Heisenberg Uncertainty principle:
<span>ΔpΔx = h/2*pi </span>
<span>Δp = the uncertainty in momentum </span>
<span>Δx = the uncertainty in position </span>
<span>h = 6.626e-34 J s (plank's constant) </span>
<span>Hint: </span>
<span>to calculate Δp use the fact that the uncertainty in the momentum is 1% (0.01) so that </span>
<span>Δp = mv*(0.01) </span>
<span>m = mass of electron </span>
<span>v = velocity of electron </span>
<span>Solve for Δx </span>
<span>Δx = h/(2*pi*Δp) </span>
<span>And that is the uncertainty in position. </span>
Answer:
Here is one way: Add water to the mixture. Only the sugar dissolves. This is a physical change.
Explanation:
The sugar would dissolve in water. You could then pour off the solution and wash the remaining sand with a bit more water. Heat the water to evaporate it from the sugar, and the two are separated.
Hello!
The mass number in isotope notation is denoted A, the atomic number is denoted as Z, and the element is denoted as X.
In the given isotope, the mass of the isotope is 212 amu, and the atomic number is 82.
We know that the number of electrons, and protons are equal to the atomic number. Therefore, there are 82 protons. Also, to find the number of neutrons, we subtract the atomic number from the atomic mass.
212 - 82 = 130 neutrons
<u>Final answers</u>:
- Atomic Number: 82
- Mass number: 212
- Number of Protons: 82
- Number of Neutrons: 130
Answer:
The answer to your question is: letter B
Explanation:
Data
3.58 x 10⁴ cal to joules
1 calories --------------- 4.184 joules
3.58 x 10⁴ cal----------- x
x = ( 3.58 x 10⁴ x 4.184) / 1
x = 149787.2 joules
x = 1.5 x 10⁵ J