Answer:
A. Soaps react with ions in hard water to create a precipitate.
B. Soaps are both hydrophobic and hydrophilic.
D. Soaps should be weakly alkaline in solution.
Explanation:
A. Hard water contains <u>magnesium and calcium minerals</u> like calcium and magnesium carbonates, sulfates and bicarbonates. As soon as these minerals come in contact with soap their ions like Mg²⁺ & Ca²⁺ form precipitates.
B. Soap are both hydrophilic and hydrophobic. They reason why they exhibit both the properties is really important for their functionality. The hydrophobic part of soap makes interaction with oil/dust particles while the hydrophilic part makes interaction with water. When the cloth is rinsed the dirt/soap particles are removed from the dirty clothes thereby making them clean.
C. Soaps have alkaline pH i.e. more than 7 that is why they have bitter taste.
<h3>Balanced equation :
2C₂H₆ (g) + 7O₂ (g) ⟶ 4CO₂ (g) + 6H₂O (ℓ)</h3><h3>Further explanation</h3>
Alkanes are saturated hydrocarbons that have single bonds in chains
General formula for alkanes :

Hydrocarbon combustion reactions (specifically alkanes)

So that the burning of ethane with air (oxygen):

2C₂H₆ (g) + 7O₂ (g) ⟶ 4CO₂ (g) + 6H₂O (ℓ)
or we can use mathematical equations to solve equilibrium chemical equations by giving the coefficients for each compound involved in the reaction
C₂H₆ (g) + aO₂ (g) ⟶ bCO₂ (g) + cH₂O (ℓ)
C : left 2, right b ⇒ b=2
H: left 6, right 2c⇒ 2c=6⇒ c= 3
O : left 2a, right 2b+c⇒ 2a=2b+c⇒2a=2.2+3⇒2a=7⇒a=7/2
i believe it would be B '' tetrahedral compound ''
The answer would be Rocks, metals, hydrogen compounds, hydrogen and helium, all in gaseous form.
Answer: With few exceptions, the mitotic process ensures that this is the case. Therefore, mitosis ensures that each successive cellular generation has the same genetic composition as the previous generation, as well as an identical chromosome set.