Answer:
Kp = 0.022
Explanation:
<em>Full question: ...With 2.3 atm of ammonia gas at 32. °C. He then raises the temperature, and when the mixture has come to equilibrium measures the partial pressure of hydrogen gas to be 0.69 atm. </em>
<em />
The equilibrium of ammonia occurs as follows:
2NH₃(g) ⇄ N₂(g) + 3H₂(g)
Where Kp is defined as:

<em>Where P represents partial pressure of each gas.</em>
<em />
As initial pressure of ammonia is 2.3atm, its equilibrium concentration will be:
P(NH₃) = 2.3atm - 2X
<em>Where X represents reaction coordinate</em>
<em />
Thus, pressure of hydrogen and nitrogen is:
P(N₂) = X
P(H₂) = 3X.
As partial pressure of hydrogen is 0.69atm:
3X = 0.69
X = 0.23atm:
P(NH₃) = 2.3atm - 2(0.23atm) = 1.84atm
P(N₂) = 0.23atm
P(H₂) = 0.69atm

<h3>Kp = 0.022</h3>
Answer:
CH3OH + 02 ----> C02 + H20
balanced equation -
CH3OH + 3/202 ----> C02 + 2H20
Use exactly the same process as the one used on another question of yours I answered.
Answer: The possible molecular formula will be 
Explanation:
Mass of C= 27.3 g
Mass of O = 72.7 g
Step 1 : convert given masses into moles.
Moles of C =
Moles of O =
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For C =
For O =
The ratio of C : O = 1: 2
Hence the empirical formula is
The possible molecular formula will be=
First , 27.6 cm^3 is equal to 27.6 ml
Density = mass g / volume cm^3
= 74.6 / 27.6 = ........ g/cm^3