1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Eva8 [605]
3 years ago
9

A car travels west at 40 km/h

Physics
1 answer:
Nesterboy [21]3 years ago
3 0

Answer:

The car is going 0 km/h more than the bike

Explanation:

You might be interested in
Breanna is standing beside a merry-go-round pushing 19° from the tangential direction and is able to accelerate the ride and her
leva [86]

To solve the problem it is necessary to apply the concepts given in the kinematic equations of angular motion that include force, acceleration and work.

Torque in a body is defined as,

\tau_l = F*d

And in angular movement like

\tau_a = I*\alpha

Where,

F= Force

d= Distance

I = Inertia

\alpha = Acceleration Angular

PART A) For the given case we have the torque we have it in component mode, so the component in the X axis is the net for the calculation.

\tau= F*cos(19)*d

On the other hand we have the speed data expressed in RPM, as well

\omega_f = 10rpm = 10\frac{1rev}{1min}(\frac{1min}{60s})(\frac{2\pi rad}{1rev})

\omega_f = 1.0471rad/s

Acceleration can be calculated by

\alpha = \frac{\omega_f}{t}

\alpha = \frac{1.0471}{9}

\alpha = 0.11rad/s^2

In the case of Inertia we know that it is equivalent to

I = \frac{1}{2}mr^2 = \frac{1}{2}(750)*(2.3)^2

I = 1983.75kg.m^2

Matching the two types of torque we have to,

\tau_l=\tau_a

Fd=I\alpha

Fcos(19)*2.3=1983.75(0.11)

F=100.34N

PART B) The work performed would be calculated from the relationship between angular velocity and moment of inertia, that is,

W = \frac{1}{2}I\omega_f^2

W= \frac{1}{2}(1983.75)(1.0471)^2

W=1087.51J

7 0
3 years ago
The atomic number of a element if found by countingthe number of what in an atom?
S_A_V [24]
The Atomic number is found by counting the number of Protons found in the atom. Make brainliest if I helped best please :)
4 0
3 years ago
The following data were collected during a short race between two friends. Velocity (m/s) 0 0.5 1 1.5 2 2 4 6 2 0 Time (s) 0 2 4
scoundrel [369]

The characteristics of the kinematics allow to find the results for the questions about the movement of the body are:

a)  we have four sections;

  • 0 to 8 s The body is accelerating.
  • 8 to 10 s The body goes at a constant speed, the acceleration is zero.
  • 10 to 14 Body accelerating.
  • 14 to 18 Body slowing down.

b)  The acceleration is the first 8 s is:  a = 0.25 m / s²

c) The maximum acceleration is:    a = 1 m / s²

d) The displacement   is:  i) d₁ =  8m,     ii)  d_{total}= 16 m

e) maximum speed  is:      v = 6 m / s

Kinematics studies the movement of bodies by finding relationships between the position, speed and acceleration of bodies.

        v = v₀ + a t

        y = v₀ t + ½ a t²

where v and v₀ is the current and initial velocity, respectively, a is the acceleration and t is time.

In many circumstances graphs are made for their analysis, in a graph of speed versus time when we have a horizontal line the speed is constant, the acceleration is zero and in the case of a slope there is an acceleration, we have two cases:

  • Positive slope the body is accelerating and the speed is increasing.
  • Negative slope the body is stopping, the speed decreases.

Let's answer the different questions about the system.

a) in the attached we have a graph of the velocity versus time, each section corresponds to a change in the slope of the graph, we have four sections;

  • 0 to 8 s The body is accelerating.
  • 8 to 10 s The body goes at a constant speed, the acceleration is zero.
  • 10 to 14 Body accelerating.
  • 14 to 18 Body slowing down.

b) The acceleration is the first 8 s

          v = v₀ + a t

          a = \frac{v-v_o}{\Delta t}  

          a = \frac{2-0}{8-0}  

          a = 0.25 m / s²

c) The maximum acceleration is when the slope is maximum.

          a = \frac{6-2}{ 14-10}  

          a = 1 m / s²

Therefore the acceleration is maximum in the section between 10 and 14 s

d) The total displacement is the sum of the displacements of each section.

         d_{total } = d_1 +d_2 + d_3 +d_4  

We look for every displacement.

       d₁ = v₀ + ½ a₁ Δt²

       d₁ = 0 + ½ 0.25 8²

       d₁ = 8 m

In the second section the velocity is constant

         d₂ = v₂ Δt₂

         d₂ = 2 (10-8)

         d₂ = 4 m

The third section.

    d₃ = v₀ + ½ a t²

    d₃ = 2 + ½ 1 (14-10) ²

    d₃ = 10 m

The distance of the fourth section.

       

we look for acceleration

          a₄ = \frac{v-v_o}{\Delta t}  

          a₄ = \frac{0-6}{18-14}  

          a₄ = -1.5 m / s²

     

          d₄ = 6 + ½ (-1.5) (1814) ²

          d₄ = -6 m

The total displacement is;

          d_{total} = 8 + 4 + 10 -6

          d_{total} = 16 m

e) The maximum speed is the highest point in the graph of speed versus time that in the attachment we can see corresponds to

          v = 6 m / s

In conclusion using the characteristics of kinematics we can find the results for the questions about the motion of bodies are:

  a)  we have four sections;

  • 0 to 8 s The body is accelerating.
  • 8 to 10 s The body goes at a constant speed, the acceleration is zero.
  • 10 to 14 Body accelerating.
  • 14 to 18 Body slowing down.

b)  The acceleration is the first 8 s is:  a = 0.25 m / s²

c) The maximum acceleration is:    a = 1 m / s²

d) The displacement   is:  i) d₁ =  8m,     ii)  d_{total}= 16 m

e) maximum speed  is:      v = 6 m / s

Learn more about kinematics here: brainly.com/question/24783036

3 0
2 years ago
Suppose you have two magnets. Magnet A doesn't have its poles labeled, but Magnet B does have a clearly labeled north and south
Elina [12.6K]

Before going to answer this question first we have to know the fundamental principle of magnetism.

A magnet have two poles .The important characteristic of a magnet is that like poles will repel each other while unlike poles will attract each other.

Through this concept the question can be answered  as explained below-

A-As per first option the side of  magnet A is repelled by the south pole  of magnet B. Hence the pole of a must be south .It can't be north as it will lead to attraction.

B-The side of magnet A is repelled by the  north pole of magnet B. Hence the side of A must be  north pole.It can't be a south pole.

C-The side of magnet A is attracted by the south pole  of magnet  B .Hence the side of magnet A must be north.Hence this is right

D-The side of magnet A is attracted by the north pole of magnet B. Hence the side of A must south.It can't be north as it will lead to repulsion.

Hence the option C is right.

3 0
3 years ago
Read 2 more answers
A solid sphere of weight 42.0 N rolls up an incline at an angle of 36.0°. At the bottom of the incline the center of mass of the
Alecsey [184]

Answer:

Part a)

KE = 77.95 J

Part b)

L = 3.16 m

Part c)

distance L is independent of the mass of the sphere

Explanation:

Part a)

As we know that rotational kinetic energy of the sphere is given as

KE = \frac{1}{2}I\omega_2 + \frac{1}{2}mv^2

so we will have

KE = \frac{1}{2}(\frac{2}{5}mR^2)(\frac{v}{R})^2 + \frac{1}{2}mv^2

so we will have

KE = \frac{1}{5} mv^2 + \frac{1}{2}mv^2

KE = \frac{7}{10} mv^2

KE = \frac{7}{10}(\frac{42}{9.81})(5.10^2)

KE = 77.95 J

Part b)

By mechanical energy conservation law we know that

Work done against gravity = initial kinetic energy of the sphere

So we will have

mgLsin\theta = KE

\frac{42}{9.81}(9.81)L sin36 = 77.95

L = 3.16 m

Part c)

by equation of energy conservation we know that

\frac{7}{10}mv^2 = mgL sin\theta

so here we can see that distance L is independent of the mass of the sphere

7 0
3 years ago
Other questions:
  • A block with mass m = 4.5 kg is attached to two springs with spring constants kleft = 36 N/m and kright = 50 N/m. The block is p
    14·1 answer
  • Archimedes' principle says that a 15 N object is buoyed up by a force that is
    6·2 answers
  • The Sojourner Mars rover has a weight of 42.7 N on Mars where the acceleration due to gravity is 3.72 m/s2. What is Sojourner's
    12·1 answer
  • Which of the following is a risk associated with texting?
    13·1 answer
  • What is a light particle called
    9·1 answer
  • To practice Problem-Solving Strategy 25.1 Power and Energy in Circuits. A device for heating a cup of water in a car connects to
    5·1 answer
  • Two particles are fixed to an x axis: particle 1 of charge q1 = 2.78 × 10-8 c at x = 15.0 cm and particle 2 of charge q2 = -3.24
    13·1 answer
  • I GIVE CROWNS!!<br> I need how you worked it out as well please because I don't know how to do it.
    6·1 answer
  • An opera singer who is a baritone, lowers his pitch and raises his voice for a song. Which best describes how the resulting soun
    14·1 answer
  • What is velocity Write its formula
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!