Aldehydes may oxidize to form carboxylic acid <span>exception to oxidizing formaldehyde with strong oxidizing agent.
HCHO + 3[O] = CO</span>₂ + H₂O
Answer :
(a) Reaction at anode (oxidation) :
(b) Reaction at cathode (reduction) :
(c) 
(d) Yes, we have have enough information to calculate the cell voltage under standard conditions.
Explanation :
The half reaction will be:
Reaction at anode (oxidation) :

Reaction at cathode (reduction) :

To balance the electrons we are multiplying oxidation reaction by 4 and then adding both the reaction, we get:
Part (a):
Reaction at anode (oxidation) :

Part (b):
Reaction at cathode (reduction) :

Part (c):
The balanced cell reaction will be,

Part (d):
Now we have to calculate the standard electrode potential of the cell.


For a reaction to be spontaneous, the standard electrode potential must be positive.
So, we have have enough information to calculate the cell voltage under standard conditions.
Answer:
Explanation:
Firstly of all we have to construct the min-heap of the k-sub list and each sub list which is a node in the constructed min-heap.
We have several steps to follows:
Step-1. When we compare the two sub lists, at the starting we can compare their first elements which is actually their minimum elements.
Step-2. The min-heap formation will cost be O(k) time.
Step-3. After the step 1 & step 2 we can run the minimum algorithm which can be extracted from the minimum element in the root list.
Step-4. Then Update the root list in the heap and after that simplify the min-heap as maintained by the new minimum element in the root list.
Step-5. If any root sub-list becomes empty in the step 4 then we can take any leaf sub-list from the root and simplify it.
Step-6. At every Extraction of the element it can take up to O(log k) time.
Hence, We can say that the extract of n element in the total whose
Running time will be O(n log k + k) which can be equal to the O(n log k+ k) (since k < n).
Answer:
B. the amount of atoms you contain