a. 381.27 m/s
b. the rate of effusion of sulfur dioxide = 2.5 faster than nitrogen triiodide
<h3>Further explanation</h3>
Given
T = 100 + 273 = 373 K
Required
a. the gas speedi
b. The rate of effusion comparison
Solution
a.
Average velocities of gases can be expressed as root-mean-square averages. (V rms)

R = gas constant, T = temperature, Mm = molar mass of the gas particles
From the question
R = 8,314 J / mol K
T = temperature
Mm = molar mass, kg / mol
Molar mass of Sulfur dioxide = 64 g/mol = 0.064 kg/mol

b. the effusion rates of two gases = the square root of the inverse of their molar masses:

M₁ = molar mass sulfur dioxide = 64
M₂ = molar mass nitrogen triodide = 395

the rate of effusion of sulfur dioxide = 2.5 faster than nitrogen triodide
Answer:
CuCl2-Ion-dipole forces
CuSO4-Ion-dipole forces
NH3-Dipole-dipole forces
CH3OH-Dipole-dipole forces
Explanation:
Water consists of a dipole. The water molecule contains a positive end and a negative end. The positive ion attracts the negative dipole of water while the positive dipole in water interacts with the negative ion of an ionic substance. This explains the dissolution of ionic substances in water.
Copper II chloride and copper sulphate are ionic substances hence they dissolve by the mechanism described above.
Molecules consisting of dipoles dissolves by interaction of the molecule's dipoles with the dipoles in water. For example, methanol interacts with water through hydrogen bonding which is involves molecular dipoles
Answer:
3,855.532 grams
Explanation:
1 pound = 453.592 grams
8.50 = ? grams
--> 8.50 * 453.592 = 3,855.532 grams.
Positive
And Negative for oxygen.
Answer:
Use the formula below
Explanation:
use the moles ratio for this by writing down the reaction and balancing the equation