1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MAXImum [283]
3 years ago
8

Describe a scenario where a car's speed could stay the same, but the acceleration changes.

Physics
1 answer:
k0ka [10]3 years ago
8 0

Answer:

An object's acceleration is the rate its velocity (speed and direction) changes. Therefore, an object can accelerate even if its speed is constant - if its direction changes.

Explanation:

You might be interested in
4:list one food chain that is part of the food web.
Sophie [7]
4. Grass - Caterpillar - Hedgehog - Fox
5. Caterpillar, Rabbit, Mouse.
6. Cougar and Fox.
7. Bacteria
8. The bird, hedgehog, Fox and cougar would be effected since the Hedgehogs and birds would soon die out due to the loss of their food. Once they die out, the cougar and Fox would have no predators left to eat.
6 0
3 years ago
In which medium does light travel faster: one with a critical angle of 27.0° or one with a critical angle of 32.0°? Explain. (Fo
Eddi Din [679]

Answer:

Among those two medium, light would travel faster in the one with a reflection angle of 32^{\circ} (when light enters from the air.)

Explanation:

Let v_{1} denote the speed of light in the first medium. Let v_{\text{air}} denote the speed of light in the air. Assume that the light entered the boundary at an angle of \theta_{1} to the normal and exited with an angle of \theta_{\text{air}}. By Snell's Law, the sine of \theta_{1}\! and \theta_{\text{air}}\! would be proportional to the speed of light in the corresponding medium. In other words:

\displaystyle \frac{v_{1}}{v_{\text{air}}} = \frac{\sin(\theta_{1})}{\sin(\theta_{\text{air}})}.

When light enters a boundary at the critical angle \theta_{c}, total internal reflection would happen. It would appear as if the angle of refraction is now 90^{\circ}. (in this case, \theta_{\text{air}} = 90^{\circ}.)

Substitute this value into the Snell's Law equation:

\begin{aligned}\frac{v_{1}}{v_{\text{air}}} &= \frac{\sin(\theta_{1})}{\sin(\theta_{\text{air}})} \\ &= \frac{\sin(\theta_{c})}{\sin(90^{\circ})} \\ &= \sin(\theta_{c})\end{aligned}.

Rearrange to obtain an expression for the speed of light in the first medium:

v_{1} = v_{\text{air}} \cdot \sin(\theta_{1}).

The speed of light in a medium (with the speed of light slower than that in the air) would be proportional to the critical angle at the boundary between this medium and the air.

For 0 < \theta < 90^{\circ}, \sin(\theta) is monotonically increasing with respect to \theta. In other words, for \!\theta in that range, the value of \sin(\theta)\! increases as the value of \theta\! increases.

Therefore, compared to the medium in this question with \theta_{c} = 27^{\circ}, the medium with the larger critical angle \theta_{c} = 32^{\circ} would have a larger \sin(\theta_{c}). such that light would travel faster in that medium.

4 0
3 years ago
Light is shone on a diffraction grating
Pani-rosa [81]

Answer:

    λ = 482.05 nm

Explanation:

The diffraction phenomenon and the diffraction grating is described by the expression

         d sin θ = m λ

where d is the distance between two consecutive slits, λ the wavelength and m an integer representing the order of diffraction

in this case they indicate the distance between slits, the angle and the order of diffraction

         λ = \frac{d sin \theta }{m}d sin θ / m

let's calculate

         λ = 1.00 10⁻⁶ sin 74.6 / 2

         λ = 4.82048 10⁻⁷ m

Let's reduce to nm

         λ = 4.82048 10⁻⁷ m (10⁹ nm / 1 m)

         λ = 482.05 nm

3 0
3 years ago
1. An airplane flies 800 kilometers east from Denver to Wichita in one hour. Then the plane flies west back to Denver in the sam
Bumek [7]

B. The velocity of the second flight is negative compared to the speed.

3 0
3 years ago
describes how the color and texture of a surface affect absorption and reflection of solar radiation?
Wewaii [24]

Most of the radiation, however, is absorbed by the earth's surface. ... Every surface on earth absorbs and reflects energy at varying degrees, based on its color and texture. Dark-colored objects absorb more visible radiation; light-colored objects reflect more visible radiation.

3 0
3 years ago
Other questions:
  • A 2.03 cm high insect is 1.39 m from a 131 mm focal-length lens. Where is the image? How high is it?
    8·1 answer
  • Cookware companies have been using a chemical called C-8, which helps to create a nonstick coating to pans. However, the Environ
    15·2 answers
  • Before 1960, people believed that the maximum attainable coefficient of static friction for an automobile tire on a roadway was
    8·1 answer
  • How many quantum numbers are needed to describe the energy state of an electron in an atom?
    7·1 answer
  • A 20g book laying on a 40cm high table. Just before a cat knocks it off the table what is the books gravitational potential ener
    9·1 answer
  • What is the value of x if one side is 8 and the other side is 6
    13·1 answer
  • The most abundant element in earth's continental crust (by weight) is____?
    7·2 answers
  • Work of 5 Joules is done in stretching a spring from its natural length to 19 cm beyond its natural length. What is the force (i
    11·1 answer
  • Identify the word being referred to choose your answer from the words below​
    13·1 answer
  • The velocity of an object with mass = 2kg is given as a function of time:
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!