Answer:
It would move either left or right
Explanation: Taking assumption that,
Fructose + ATP fructose - 6 - phosphate + ADP (The standard free energy of hydrolysis for fructose-6-phosphate is - 15.9 kJ/mol.) 3 - phosphoglycerate + ATP 1,3 - bisphosphoglycerate + ADP (The standard free energy of hydrolysis for 1,3-bisphosphoglycerate is - 4 9.3 kJ/mol.) pyruvate + ATP phosphoenolpyruvate + ADP (The standard free energy of hydrolysis for phosphoenolpyruvate -is -61.9 kJ/mol.)
pH of the buffer solution is 1.76.
Chemical dissociation of formic acid in the water:
HCOOH(aq) ⇄ HCOO⁻(aq) + H⁺(aq)
The solution of formic acid and formate ions is a buffer.
[HCOO⁻] = 0.015 M; equilibrium concentration of formate ions
[HCOOH] + [HCOO⁻] = 1.45 M; sum of concentration of formic acid and formate
[HCOOH] = 1.45 M - 0.015 M
[HCOOH] = 1.435 M; equilibrium concentration of formic acid
pKa = -logKa
pKa = -log 1.8×10⁻⁴ M
pKa = 3.74
Henderson–Hasselbalch equation: pH = pKa + log(cs/ck)
pH = 3.74 + log (0.015 M/1.435 M)
pH = 3.74 - 1.98
pH = 1.76
More about buffer: brainly.com/question/4177791
#SPJ4
The concentration of hydrogen can be shown as:
[H+ ] = 3 * 10-5 M
pH can be determined as:
pH = - log [H+ ]
= - log (3 * 10-5)
= 4.53
Thus the pH of solution is 4.53
8.................................