The given mass of cobalt chloride hydrate = 2.055 g
A sample of cobalt chloride hydrate was heated to drive off waters of hydration and the anhydrate was weighed.
The mass of anhydrous cobalt chloride = 1.121 g anhydrate.
The mass of water lost during heating = 2.055 g - 1.121 g = 0.934 g
Converting mass of water of hydration present in the hydrate to moles using molar mass:
Mass of water = 0.934 g
Molar mass of water = 18.0 g/mol
Moles of water = 
Answer:
Explanation:
First, let's review the ideal gas law, PV = nRT. In this equation, 'P' is the pressure in atmospheres, 'V' is the volume in liters, 'n' is the number of particles in moles, 'T' is the temperature in Kelvin and 'R' is the ideal gas constant (0.0821 liter atmospheres per moles Kelvin)
Answer:
The sum of the molar masses of each isotope of the element.
Answer:
letter A. i hope this is correct answer
This is an incomplete question, here is a complete question.
The conversion of cyclopropane to propene occurs with a first-order rate constant of 2.42 × 10⁻² hr⁻¹. How long will it take for the concentration of cyclopropane to decrease from an initial concentration 0.080 mol/L to 0.053 mol/L?
Answer : The time taken will be, 17.0 hr
Explanation :
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = time passed by the sample = ?
a = initial concentration of the reactant = 0.080 M
a - x = concentration left = 0.053 M
Now put all the given values in above equation, we get


Therefore, the time taken will be, 17.0 hr