Answer:
0.4 M
Explanation:
Equilibrium occurs when the velocity of the formation of the products is equal to the velocity of the formation of the reactants. It can be described by the equilibrium constant, which is the multiplication of the concentration of the products elevated by their coefficients divided by the multiplication of the concentration of the reactants elevated by their coefficients. So, let's do an equilibrium chart for the reaction.
Because there's no O₂ in the beginning, the NO will decompose:
N₂(g) + O₂(g) ⇄ 2NO(g)
0.30 0 0.70 Initial
+x +x -2x Reacts (the stoichiometry is 1:1:2)
0.30+x x 0.70-2x Equilibrium
The equilibrium concentrations are the number of moles divided by the volume (0.250 L):
[N₂] = (0.30 + x)/0.250
[O₂] = x/0.25
[NO] = (0.70 - 2x)/0.250
K = [NO]²/([N₂]*[O₂])
K = 
7.70 = (0.70-2x)²/[(0.30+x)*x]
7.70 = (0.49 - 2.80x + 4x²)/(0.30x + x²)
4x² - 2.80x + 0.49 = 2.31x + 7.70x²
3.7x² + 5.11x - 0.49 = 0
Solving in a graphical calculator (or by Bhaskara's equation), x>0 and x<0.70
x = 0.09 mol
Thus,
[O₂] = 0.09/0.250 = 0.36 M ≅ 0.4 M
The heat is expanding it from the inside it cooks from the inside out
D — density
hope this helps !
It's reported inside the riddles or decorations
<h2>Natural Abundance for 10B is 19.60%</h2>
Explanation:
- The natural isotopic abundance of 10B is 19.60%.
- The natural isotopic abundance of 11B is 80.40%.
- The isotopic masses of boron are 10.0129 u and 11.009 u respectively.
For calculation of abundance of both the isotopes -
Supposing it was 50/50, the average mass would be 10.5, so to increase the mass we need a more percentage of 11.
Determining it as an equation -
10x + 11y= 10.8
x+y=1 (ratio)
10x + 10y = 10
By taking the denominator away from the numerator
we get;
y = 0.8
x + y = 1
∴ x = 0.2
To get percentages we need to multiply it by 100
So, the calculated abundance is 80% for 11 B and 20% 10 B.