The metalcore is the central component of any metal that is covered by wires. Metalcore is found in the X denoted area.
<h3>What is a solenoid?</h3>
A solenoid is a coil of wire that conducts an electric current. A solenoid is an electromagnet made out of a wire or helical coil.
When an electric current is sent through the coil, it produces a magnetic field. A solenoid is a coil that generates a magnetic field when an electric current passes through it.
When a conductive wire is used to build a loop, a solenoid is formed.
Hence the metalcore is found in the given X area.
To learn more about the solenoid refer to the link ;
brainly.com/question/16015159
Answer:
Q = 12540 J
Explanation:
It is given that,
Mass of water, m = 50 mL = 50 g
It is heated from 0 degrees Celsius to 60 degrees Celsius.
We need to find the energy required to heat the water. The formula use to find it as follows :

Where c is the specific heat of water, c = 4.18 J/g°C
Put all the values,

So, 12540 J of energy is used to heat the water.
Answer:
The order of magnitude of the distance from the sun to Earth is 10⁸ km.
Explanation:
The order of magnitude of the distance from the sun to Earth can be calculated as follows:

Where:
c: is the speed of light = 3x10⁸ m/s
t: is the time = 8 min
Hence, the distance is:

Therefore, the order of magnitude of the distance from the sun to Earth is 10⁸ km.
I hope it helps you!
Answer:
D. Dylan is incorrect because a 90-degree launch angle results in the largest vertical range
Explanation:
Projectile is the motion of an object thrown into space. When an object is thrown into space, the only force which acts on it is the acceleration due to gravity.
An object thrown into space would reach maximum height (vertical range) if it is launched at an angle of 90 degrees. For maximum horizontal range, the object needs to be launched at an angle of 45 degrees.
Therefore Dylan is incorrect because a 90-degree launch angle results in the largest vertical range
Answer:
24.084 m/s
Explanation:
From the law of conservation of linear momentum
Total momentum before collision equals to the total momentum after collision
Since momentum=mv where m is mass and v is velocity
where
is the mass of the truck,
is velocity of the truck,
is the common velocity of moving and standing truck after collision and
is the mass of the standing truck
Making
the subject we obtain
Substituting
as 25000 Kg,
as 22.3 m/s,
as 2000 Kg we obtain
Therefore, assuming no friction and considering that after collision they still move eastwards hence common velocity and initial truck velocities are positive
The truck was moving at 24.084 m/s