Answer: = 5.75 × 10 -6
Explanation:
= 5.75 × 10-6
(scientific notation)
= 5.75e-6
(scientific e notation)
= 5.75 × 10-6
(engineering notation)
(millionth; prefix micro- (u))
= 0.00000575
(real number)
Answer:
A
Explanation:
if the man doubles his force to 40 and the box was yet to move that means acceleration also doubled so your answer would be A
<span>Let's first off calculate the kinetic energy using the formula 1/2MV^2. Where the mass, M, is 0.6Kg. And speed, V, is 2. Hence we have 1/2 * 0.6 * 2^2 = 1.2J. Since kinetic energy is energy due to motion; hence at point B the rubber has a KE of 1.2J and not 7.5J. So I would say that only the Mass and speed is actually true; While it's kinetic energy is not true.</span>
Answer:
the correct answer is option C which is 50 units.
Explanation:
given,
two vector of magnitude = 30 units and of 70 units
to calculate resultants vector = \sqrt{a^2+b^2+2 a b cos\theta}
cos θ value varies from -1 to 1
so, resultant vector
=
a = 30 units and b = 70 units
=
= 40 units to 100 units
hence, the correct answer is option C which is 50 units.
Answer:
Energy transition therefore occurs due to the amount of kinetic energy gained by the electrons. The electrons with higher kinetic energy are excited to the higher level (excited state) compare to the electron with low kinetic energy (this energy are energy in the ground state)
Explanation:
Energy level transition occur when light rays strikes a metal surface to emit electron from the surface, a term known as photoelectric effect. This amount of electron emitted from the surface depends on the speed of light ray striking the metal surface.
Energy transition therefore occurs due to the amount of kinetic energy gained by the electrons. The electrons with higher kinetic energy are excited to the higher level (excited state) compare to the electron with low kinetic energy (this energy are energy in the ground state)