Answer:
.018 M
Explanation:
grams/MM=ans./volume(L) = M
4/58.45=ans./3.8=.018 M
<span>N2, penta means 5, so 5 oxygens
so with that being said n205</span>
Density = (mass) / (volume)
Density = (17.0 g) / (25.3 cm³) = 0.672 gm per cm³. (rounded)
Answer:
The concentration the student should write down in her lab is 2.2 mol/L
Explanation:
Atomic mass of the elements are:
Na: 22.989 u
S: 32.065 u
O: 15.999 u
Molar mass of sodium thiosulfate, Na2S2O3 = (2*22.989 + 2*32.065 + 3*15.999) g/mol = 158.105 g/mol.
Mass of Na2S2O3 taken = (19.440 - 2.2) g = 17.240 g.
For mole(s) of Na2S2O3 = (mass taken)/(molar mass)
= (17.240 g)/(158.105 g/mol) = 0.1090 mole.
Volume of the solution = 50.29 mL = (50.29 mL)*(1 L)/(1000 mL)
= 0.05029 L.
To find the molar concentration of the sodium thiosulfate solution prepared we use the formula:
= (moles of sodium thiosulfate)/(volume of solution in L)
= (0.1090 mole)/(0.05029 L)
= 2.1674 mol/L
Answer:
2) Add a solution of NaBr
Explanation:
Lead (II) bromide is an inorganic powdery substance that has a solubility in water of 0.973 g/100 mL at 20°C. It is insoluble in alcohol but is soluble in alkali, ammonia, NaBr, and KBr
PbBr₂ is slightly soluble in ammonia, and it reacts with NaOH to produce Pb(OH)₂ and NaBr
Therefore, the best solution for dissolving PbBr₂(s) is NaBr