Answer:
F = 24 N
Explanation:
In this exercise we have a bar l = 100 m with a center of gravity x = 4 m, which force is needed to lift it from the other end
Let's use the rotational equilibrium relationship, where we consider the counterclockwise rotations as positive and fix the reference system at the point closest to the center of gravity
∑ τ = 0
F l -x W = 0
F = 
let's calculate
F =
4/100 600
F = 24 N
Electricity. Ruler. 69. N.
Answer:
When they are connected in series
The 50 W bulb glow more than the 100 W bulb
Explanation:
From the question we are told that
The power rating of the first bulb is 
The power rating of the second bulb is 
Generally the power rating of the first bulb is mathematically represented as

Where
is the normal household voltage which is constant for both bulbs
So

substituting values

Thus the resistance of the second bulb would be evaluated as

From the above calculation we see that

This power rating of the first bulb can also be represented mathematically as

This power rating of the first bulb can also be represented mathematically as

Now given that they are connected in series which implies that the same current flow through them so

This means that

So when they are connected in series

This means that the 50 W bulb glows more than the 100 \ W bulb
Answer:
The magnitude of the resultant of the magnetic field is 
Explanation:
Given that,
Current = 40 A
Magnetic field 
Distance = 22 cm
We need to calculate the magnetic field
Using formula of magnetic field

Where, r = distance
I = current
Put the value into the formula


We need to calculate the magnitude of the resultant of the magnetic field
Using formula of resultant

Put the value into the formula


Hence, The magnitude of the resultant of the magnetic field is 
<span>Drought
....................</span>