There are no appropriate examples in the list you provided with your question.
Examples of radiation:
... sunshine to tan your skin
... radio energy to bring you the news
... X-ray to check your teeth
... microwave to heat up the meatloaf
... flashlight to see where you're going
... RF energy to get an MRI of your knee
... infrared radiation from the campfire to warm your tootsies
... UHF radio waves to make a call or check Facebook with your smartphone
Answer:
R₂ / R₁ = D / L
Explanation:
The resistance of a metal is
R = ρ L / A
Where ρ is the resistivity of aluminum, L is the length of the resistance and A its cross section
We apply this formal to both configurations
Small face measurements (W W)
The length is
L = W
Area
A = W W = W²
R₁ = ρ W / W² = ρ / W
Large face measurements (D L)
Length L = D= 2W
Area A = W L
R₂ = ρ D / WL = ρ 2W / W L = 2 ρ/L
The relationship is
R₂ / R₁ = 2W²/L
Answer: Option (b) is the correct answer.
Explanation:
According to ohm's law, the relationship between voltage, resistance, and current is that current passing through a conductor is directly proportional to the voltage over resistance.
Mathematically, I = 
From this relationship we can see that when we decrease the voltage, and do not change the resistance, the current will also decrease. As current is directly proportional to voltage and inversely proportional to resistance.
The true scientific way is the last: using the water displacement method
You can keep an object's acceleration constant if the force acting on it is double by adding another force going in the opposite direction of the first force. The second force will have to be as strong as the first force was originally in order for the acceleration to be the same. This is the same concept as if you have 2 of something, double it to get 4, and subtract 2 again. You'll end up with the same value you started with.