Its random, with no sense of meaning to it. Besides a person just typing things
<u>M</u><u>e</u><u>t</u><u>h</u><u>a</u><u>n</u><u>e</u><u> </u>is a carbon compound which undergoes combustion to <em><u>release energy</u></em> and form bi production which are <u>Carbon</u><u> </u><u>dioxide</u><u> </u>( CO2 )<u> </u><u>and</u><u> </u> <u>W</u><u>ater</u> ( H20 ).
the balanced chemical equation for the reaction is : -
You can eliminate A, C, and D almost instantly if you know that engineers are construction workers. The answer is B.
Answer:
1.82 L
Explanation:
We are given the following information;
- Initial volume as 2.0 L
- Initial temperature as 60.0°C
- New volume as 30.0 °C
We are required to determine the new volume;
From Charles's law;

Where,
are initial and new volume respectively, while
are initial and new temperatures respectively;



Rearranging the formula;


Therefore, the new volume that would be occupied by the gas is 1.82 L
The answer for the following problem is mentioned below.
- <u><em>Therefore number of molecules(N) present in the calcium phosphate sample are 19.3 × 10^23 molecules.</em></u>
Explanation:
Given:
mass of calcium phosphate (
) = 125.3 grams
We know;
molar mass of calcium phosphate (
) = (40×3) + 3 (31 +(4×16))
molar mass of calcium phosphate (
) = 120 + 3(95)
molar mass of calcium phosphate (
) = 120 +285 = 405 grams
<em>We also know;</em>
No of molecules at STP conditions(
) = 6.023 × 10^23 molecules
To solve:
no of molecules present in the sample(N)
We know;
N÷
=
N =(405×6.023 × 10^23) ÷ 125.3
N = 19.3 × 10^23 molecules
<u><em>Therefore number of molecules(N) present in the calcium phosphate sample are 19.3 × 10^23 molecules</em></u>