Answer:
The resultant force would (still) be zero.
Explanation:
Before the 600-N force is removed, the crate is not moving (relative to the surface.) Its velocity would be zero. Since its velocity isn't changing, its acceleration would also be zero.
In effect, the 600-N force to the left and 200-N force to the right combines and acts like a 400-N force to the left.
By Newton's Second Law, the resultant force on the crate would be zero. As a result, friction (the only other horizontal force on the crate) should balance that 400-N force. In this case, the friction should act in the opposite direction with a size of 400 N.
When the 600-N force is removed, there would only be two horizontal forces on the crate: the 200-N force to the right, and friction. The maximum friction possible must be at least 200 N such that the resultant force would still be zero. In this case, the static friction coefficient isn't known. As a result, it won't be possible to find the exact value of the maximum friction on the crate.
However, recall that before the 600-N force is removed, the friction on the crate is 400 N. The normal force on the crate (which is in the vertical direction) did not change. As a result, one can hence be assured that the maximum friction would be at least 400 N. That's sufficient for balancing the 200-N force to the right. Hence, the resultant force on the crate would still be zero, and the crate won't move.
<span>One timing problem
in using fiscal policy to counter a recession is called the “legislative lag”
it occurs between the time the time the need for fiscal action is recognized
and between the time that it is taken in action.</span>
<h2>Answer: electrostatic and gravitational force
</h2><h2 />
Mechanical energy remains constant (conserved) if only <u>conservative forces</u> act on the particles.
In this sense, the following forces are conservative:
-Gravitational
-Elastic
-Electrostatics
While the Friction Force and the Magnetic Force are not conservative.
According to this, mechanical energy is conserved in the presence of electrostatic and gravitational forces.
<span>31.3 m/s
Since the water balloon is being launched at a 45 degree angle, the horizontal and vertical speeds will be identical. Also the time the balloon takes to reach its peak altitude will match the time it takes to fall. So let's create a few expressions about what we know.
Distance the water balloon travels at velocity v for time t
d = vt
Total time required for the entire trip is double since the balloon goes up, then goes down
t = 2v/a
Now let's plug in the numbers we have, assuming the acceleration due to gravity is 9.8 m/s^2
t = 2v/9.8
100 = vt
Substitute 2v/9.8 for t in the 2nd formula
100 = v(2v/9.8)
Solve for v.
100 = v(2v/9.8)
100 = 2v^2/9.8
980. = 2v^2
490 = v^2
22.13594 = v
So we now know that both the horizontal velocity and vertical velocity needed is 22.13594 m/s. Let's verify that
2*22.13594 / 9.8 = 4.51754
So it will take 4.51754 second for the balloon to hit the ground after being launched.
4.51754 * 22.13594 = 100
And during that time it will travel 100 meters horizontally.
But we need to know the total velocity. And the Pythagorean theorem comes to the rescue. Just square the 2 velocities, add them together, and take the square root. We already know the square is 490 from the work above, so
sqrt(490+490) = sqrt(980) = 31.30495 m/s</span>
Scalars are quantities that are fully described by a magnitude (or numerical value) alone.
Vectors are quantities that are fully described by both a magnitude and a direction.