Answer: The work is 1863 N*m
Explanation:
We can define work as:
W = F*d
Where F is the force that the mover needs to apply to the refrigerator, and d is the distance that the refrigerator is moved.
To move the refrigerator, the minimal force that the mover needs to do is exactly the friction force (In this case, the refrigerator will move with constant speed).
Then we will have:
F = 230 N
and the distance is 8.1 meters, then the work will be:
W = 230N*8.1 m = 1863 N*m
Energy is "the ability to do work". Energy is how things change and move. It takes energy to cook food, to drive to school, and to jump in the air. Different forms of Energy. Energy can take a number of different forms.
The temperature of the substance giving off the heat decreases while the temperature of the substance receilving the heat increases. they leach what is called equlibrium point where heat energy can longer be exchanged hence equql temperature. this isThermal physics
Answer:
The minimum speed of the box bottom of the incline so that it will reach the skier is 8.19 m/s.
Explanation:
It is given that,
Mass of the box, m = 2.2 kg
The box is inclined at an angle of 30 degrees
Vertical distance, d = 3.1 m
The coefficient of friction, 
Using the work energy theorem, the loss of kinetic energy is equal to the sum of gain in potential energy and the work done against friction.


W is the work done by the friction.







v = 8.19 m/s
So, the speed of the box is 8.19 m/s. Hence, this is the required solution.
Answer:
electrons
Explanation:
The magnitude of the electric field outside an electrically charged sphere is given by the equation

where
k is the Coulomb's constant
Q is the charge stored on the sphere
r is the distance (from the centre of the sphere) at which the field is calculated
In this problem, the cloud is assumed to be a charged sphere, so we have:
is the maximum electric field strength tolerated by the air before breakdown occurs
is the radius of the sphere
Re-arranging the equation for Q, we find the maximum charge that can be stored on the cloud:

Assuming that the cloud is negatively charged, then

And since the charge of one electron is

The number of excess electrons on the cloud is
