Answer:
Hank u so much out don't know how much this rally
Explanation:
We learned that We are in the disk of the Galaxy, about 5/8 of the way from the center.
<h3>What is the work of Harlow Shapley?</h3>
Shapley, who was headquartered in Boulder, Colorado, used Cepheid variable stars to estimate the size of the Milky Way Galaxy and its position relative to the Sun. In 1953, he published his "liquid water belt" theory, today known as the concept of a livable zone.
There are many stars, grains of dust, and gas in the Milky Way. It is known as a spiral galaxy because, from the top or bottom, it would appear to be whirling like a pinwheel. About 25,000 light-years from the galaxy's nucleus, the Sun is situated on one of the spiral arms.
Approximately 5/8 of the way from the galaxy's nucleus, we are in the disc. William Herschel believed that the Sun and Earth were about in the middle of the vast cluster of stars known as the Milky Way.
To learn more about Harlow Shapley's original estimate go to - brainly.com/question/28145909
#SPJ4
Answer:
Option (e) = The charge can be located anywhere since flux does not depend on the position of the charge as long as it is inside the sphere.
Explanation:
So, we are given the following set of infomation in the question given above;
=> "spherical Gaussian surface of radius R centered at the origin."
=> " A charge Q is placed inside the sphere."
So, the question is that if we are to maximize the magnitude of the flux of the electric field through the Gaussian surface, the charge should be located where?
The CORRECT option (e) that is " The charge can be located anywhere since flux does not depend on the position of the charge as long as it is inside the sphere." Is correct because of the reason given below;
REASON: because the charge is "covered" and the position is unknown, the flux will continue to be constant.
Also, the Equation that defines Gauss' law does not specify the position that the charge needs to be located, therefore it can be anywhere.
Battery based heaters use electric resistance heating, which uses a lot of current (electricity) to create the heat.
As we know that total work done by a force is given by


so it is product of force and displacement along same direction
as we can write it as

so it must be the product of force and displacement in same directions so correct answer must be
<u>B. in the same direction as the displacement vector and the motion.</u>