Answer:
<h3>n(F) = 4</h3>
Explanation:
Cardinality of a set is the number of elements in that set. Given the set.
F= {mango, apple, banana, orange), we are to determine the cardinality of the set i.e the amount of fruit present in the set. Cardinality of the set F is represented as n(F).
Since there are 4 different fruit in the given set F, hence the cardinality of the set F is n(F) = 4
Two physical systems are in thermal equilibrium if no heat flows between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be in thermal equilibrium with itself if the temperature within the system is spatially and temporally uniform.
Systems in thermodynamic equilibrium are always in thermal equilibrium, but the converse is not always true. If the connection between the systems allows transfer of energy as heat but does not allow transfer of matter or transfer of energy as work, the two systems may reach thermal equilibrium without reaching thermodynamic equilibrium.
This question is incomplete because the options are missing; here is the complete question
The ozone layer is found in which layer of the atmosphere?
A. Stratosphere
B. Mesosphere
C. Thermosphere
D. Troposphere
The correct answer is A. Stratosphere
Explanation:
The ozone layer as indicated by its name is mainly composed of Ozone (O2), this layer is essential for life because it filters ultraviolet radiation and acts as a greenhouse effect gas by trapping part of the heat from the sun. Additionally, the ozone layer is located in the stratosphere, which is the second layer of the atmosphere and can be found between 20 km to 50 km from Earth's surface. Moreover, the existence of the ozone layer in the stratosphere makes the temperature increase with height due to the radiation of the sun filter by ozone.
Answer: this isnt really helping me
Explanation:
The first part of the question is:
Two point charges are placed on the x axis. (Attached file)The first charge, q1 = 8.00 nC , is placed a distance 16.0 m from the origin along the positive x axis; the second charge, q2 = 6.00 nC , is placed a distance 9.00 m from the origin along the negative x axis.
Answer:
q3 = +0.3nc
Explanation:
Due to the vector symbols in the solution, I've decided to attach the explanation to this answer.