I think the correct answer from the choices listed above is option B. The very high voltage needed to create a spark across the spark plug is produced at the transformer's secondary winding. <span>The secondary coil is engulfed by a powerful and changing magnetic field. This field induces a current in the coils -- a very high-voltage current.</span>
Answer:
a)
, b)
, c) 
Explanation:
a) The initial potential energy is:


b) The efficiency of the bounce is:


c) The final speed of Danielle right before reaching the bottom of the hill is determined from the Principle of Energy Conservation:





Answer:
a. v₁ = 16.2 m/s
b. μ = 0.251
Explanation:
Given:
θ = 15 ° , r = 100 m , v₂ = 15.0 km / h
a.
To determine v₁ to take a 100 m radius curve banked at 15 °
tan θ = v₁² / r * g
v₁ = √ r * g * tan θ
v₁ = √ 100 m * 9.8 m/s² * tan 15° = 16.2 m/s
b.
To determine μ friction needed for a frightened
v₂ = 15.0 km / h * 1000 m / 1 km * 1h / 60 minute * 1 minute / 60 seg
v₂ = 4.2 m/s
fk = μ * m * g
a₁ = v₁² / r = 16.2 ² / 100 m = 2.63 m/s²
a₂ = v₂² / r = 4.2 ² / 100 m = 0.18 m/s²
F₁ = m * a₁ , F₂ = m * a₂
fk = F₁ - F₂ ⇒ μ * m * g = m * ( a₁ - a₂)
μ * g = a₁ - a₂ ⇒ μ = a₁ - a₂ / g
μ = [ 2.63 m/s² - 0.18 m/s² ] / (9.8 m/s²)
μ = 0.251
Answer:
C
Explanation:
To melt the alcohol
Heat needed = M . L = 2 . 25 = 50 kcal
To warm up the alcohol
Heat needed = M . sp. ht. . ∆t = 2 . 0.6 . 100 = 120 kcal
Total heat needed = 170 kcal
Assuming that 0.6 kcal/ kg / ˚C is the specific heat and that the answer is wanted in kcal ( a rather odd unit to be in use here.)
Power = (voltage) x (current)
Current = (power) / (voltage)
Current = (1650 W) / (110 V)
Current = (1650 / 110) (W/V)
<em>Current = 15 Amperes </em>from the putlet.