A mole of CO2 = 2 moles of O2
8 CO moles x 2 =
16 moles
Answer:
1. ¹⁰₄Be ---> ¹⁰₅B + ⁰₋₁β
2. ³⁴₁₄Be ---> ³⁴₁₅P + ⁰₋₁β
3. ¹⁹²₇₈Pt -----> ¹⁹⁰₇₆Os + ⁴₂α
4. ²⁸₁₂Mg ---> ²⁸₁₃Al + ⁰₋₁β
Explanation:
1. In the first equation, Beryllium-10 isotope undergoes beta-decay, emitting a beta-particle to form boron-10 isotope. The balanced nuclear equation is given below:
¹⁰₄Be ---> ¹⁰₅B + ⁰₋₁β
2. In this reaction, silicon-34 isotope undergoes beta-decay, emitting a beta-particle to form phosphorus-34 isotope. The balanced nuclear equation is given below:
³⁴₁₄Be ---> ³⁴₁₅P + ⁰₋₁β
3. In this equation, platinum-192 isotope undergoes alpha-particle decay emitting an alpha-particle to form osmium-190 isotope. The balanced nuclear equation is given below:
¹⁹²₇₈Pt -----> ¹⁹⁰₇₆Os + ⁴₂α
4. In this equation, magnesium-28 isotope undergoes beta-decay, emitting a beta-particle to form aluminum-28 isotope. The balanced nuclear equation is given below:
²⁸₁₂Mg ---> ²⁸₁₃Al + ⁰₋₁β
Answer:
i am thinking that they will be extinct
Explanation:
if their habitat is dying then they are dying and it would be sad
Complete question:
ΔU for a van der Waals gas increases by 475 J in an expansion process, and the magnitude of w is 93.0 J. calculate the magnitude of q for the process.
Answer:
The magnitude of q for the process 568 J.
Explanation:
Given;
change in internal energy of the gas, ΔU = 475 J
work done by the gas, w = 93 J
heat added to the system, = q
During gas expansion process, heat is added to the gas.
Apply the first law of thermodynamic to determine the magnitude of heat added to the gas.
ΔU = q - w
q = ΔU + w
q = 475 J + 93 J
q = 568 J
Therefore, the magnitude of q for the process 568 J.