The reaction involved here would be written as:
2N2 + 3H2 = 2NH3
The equilibrium constant of a reaction is the ratio of the concentrations of the products and the reactants when in equilibrium. The expression for the equilibrium constant of this reaction would be as follows:
Kc = [NH3]^2 / [N2]^2[H2]^3
Kc = 0.40^2 / (0.20)^2 (0.10)^3
Kc = 4000
Density is Mass divided by volume.
Answer:
The book sitting on the desk
Explanation:
The gravitational potential energy of an object is the energy possessed by the object due to its position relative to the ground.
It is calculated as:
![GPE=mgh](https://tex.z-dn.net/?f=GPE%3Dmgh)
where
m is the mass of the object
g is the acceleration due to gravity
h is the height of the object with respect to the ground
From the formula, we see that the GPE of an object is directly proportional to the heigth h: so, the higher the location of the object, the larger the GPE.
In this problem, we are comparing a book sitting on a desk and the same book sitting on the floor. In the two situations, the mass of the book is the same; however, in the first case, the value of the height is h, while in the second case, the value of h is lower (because the book is located at a lower height, being on the floor).
Therefore, we can conclude that the first book must have a larger GPE, since it has a larger value of h.
Answer:
The volume of cupboard is 2.0043 m³.
Explanation:
Given data:
width of cupboard = 1.31 m
length of cupboard = 0.9 m
height of cupboard = 1.70 m
Volume = ?
Solution:
Volume = length × width × height
Volume = 0.9 m × 1.31 m × 1.70 m
Volume = 2.0043 m³
The volume of cupboard is 2.0043 m³.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
Please see below solution:
1 lb Hg x (151.50/76 lb) = cost of 1 lb.
<span>cost 1 lb x (1g/453.6 g) = cost of 1 g.</span>