Explanation:
Value of the cross-sectional area is as follows.
A =
= 3.45 
The given data is as follows.
Allowable stress = 14,500 psi
Shear stress = 7100 psi
Now, we will calculate maximum load from allowable stress as follows.

= 
= 50025 lb
Now, maximum load from shear stress is as follows.

= 
= 48990 lb
Hence,
will be calculated as follows.

= 48990 lb
Thus, we can conclude that the maximum permissible load
is 48990 lb.
Answer:
The required angle is (90-25)° = 65°
Explanation:
The given motion is an example of projectile motion.
Let 'v' be the initial velocity and '∅' be the angle of projection.
Let 't' be the time taken for complete motion.
Let 'g' be the acceleration due to gravity
Taking components of velocity in horizontal(x) and vertical(y) direction.
= v cos(∅)
= v sin(∅)
We know that for a projectile motion,
t =
Since there is no force acting on the golf ball in horizonal direction.
Total distance(d) covered in horizontal direction is -
d =
×t = vcos(∅)×
=
.
If the golf ball has to travel the same distance 'd' for same initital velocity v = 23m/s , then the above equation should have 2 solutions of initial angle 'α' and 'β' such that -
α +β = 90° as-
d =
=
=
=
.
∴ For the initial angles 'α' or 'β' , total horizontal distance 'd' travelled remains the same.
∴ If α = 25° , then
β = 90-25 = 65°
∴ The required angle is 65°.
Temperature rise will be there in cylinder B more than in cylinder A because of internal energy.
what is internal energy?
The sum of the kinetic and chemical potential energies of all the particles in the system is the internal energy. Particles accelerate and pick up kinetic energy when energy is applied to increase the temperature.
Briefing:
Cylinder A uses the heat it absorbs to both work while expanding and to increase internal energy (or temperature).
While cylinder B solely uses the heat it absorbs to increase its internal energy
As a result, cylinder B's temperature rise is greater than cylinder A's.
To know more about internal energy visit:
brainly.com/question/11278589
#SPJ4
Answer:
The Arsenic has three electron-containing orbitals. The orbitals s, p and d.
Explanation:
Arsenic is an element with an atomic number equal of 33, it means that it has 33 electrons in its orbitals in the following way:








Therefore, the Arsenic has three electron-containing orbitals (s, p d).