Answer:
A. The sound wave will reflect off Buildings and automobiles.
Explanation:
This is because the sound waves would more likely propagate through diffraction through buildings and transmission through the air. It is also more likely to be absorbed by buildings than for multiple reflections to occur off buildings and automobiles. In the process of reflection, these materials would absorb the sound energy thereby reducing its ability to reflect.
P.E = mgh
This is the formula for potential energy.
This is where m is mass, g is the acceleration due to gravity, and h is height.
All you have to do is multiply all these numbers together.
Answer:
When same-sized team members are placed on each side of the rope, the sizes of the arrows on both sides remain the same.
Explanation:
This is the answer on Plato
The car at 60 kph has 9 times more kinetic energy than the car traveling at 20 kph. This assumes that both cars have the same mass. Kinetic energy depends on the square of thee speed so if one car is going 3 times faster, its kinetic energy will be 3^2 ( = 9 ) greater. The car going at 60 kph will have 4 times the KE of the car going at 30 kph ( again assuming that the cars have the same mass.)
The speed
of the elevator at the beginning of the 8 m descent is nearly 4 m/s. Hence, option A is the correct answer.
We are given that-
the mass of the elevator (m) = 1000 kg ;
the distance the elevator decelerated to be y = 8m ;
the tension is T = 11000 N;
let us determine the acceleration 'a' by using Newton's second law of motion.
∑Fy = ma
W - T = ma
(1000kg x 9.8 m/s² ) - 11000N = 1000 kg x a
9800 - 11000 = 1000
a = - 1.2 m/s²
Using the equation of kinematics to determine the initial velocity.
² =
² + 2ay
= √ ( 2 x 1.2m/s² x 8 m )
= √19.2 m²/s²
= 4.38 m/s ≈ 4 m/s
Hence, the initial velocity of the elevator is 4m/s.
Read more about the Equation of kinematics:
brainly.com/question/12351668
#SPJ4